Synlett 2018; 29(05): 542-547
DOI: 10.1055/s-0036-1591913
synpacts
© Georg Thieme Verlag Stuttgart · New York

4-Quinolone N-Oxides as Bacterial Weapons

D. Szamosvári
Dept. Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany   Email: Thomas.Boettcher@uni-konstanz.de
,
Dept. Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany   Email: Thomas.Boettcher@uni-konstanz.de
› Author Affiliations
We gratefully acknowledge funding by the Emmy Noether program of the Deutsche Forschungsgemeinschaft (DFG), an EU FP7 Marie Curie Zukunftskolleg Incoming Fellowship Program (University of Konstanz Grant 291784), the Fonds der Chemischen Industrie (FCI), the ­Konstanz Research School Chemical Biology (KoRS-CB), and SFB969 (DFG). D.S. was supported by a KoRS-CB PhD fellowship.
Further Information

Publication History

Received: 27 October 2017

Accepted after revision: 04 January 2018

Publication Date:
12 February 2018 (eFirst)

Abstract

Various bacterial species are known to produce metabolites of the 4-quinolone N-oxide class. These compounds have antibiotic ­activities, and are believed to target the respiration of competing ­microbes by interfering with menaquinone-binding sites in enzymes of the electron-transport chain. Interestingly, even minor structural changes in related N-oxides produced by the same organism can produce a dramatic difference in antibiotic activity, suggesting possible functional specialization.

 
  • References

  • 1 Lépine F. Milot S. Déziel E. He J. Rahme LG. J. Am. Soc. Mass Spectrom. 2004; 15: 862
  • 2 Huse H. Whiteley M. Chem. Rev. 2011; 111: 152
  • 3 Dubern J.-F. Diggle SP. Mol. BioSyst. 2008; 4: 882
    • 4a Skindersoe ME. Zeuthen LH. Brix S. Fink LN. Lazenby J. Whittall C. Williams P. Diggle SP. Froekiaer H. Cooley M. Givskov M. FEMS Immunol. Med. Microbiol. 2009; 55: 335
    • 4b Kim K. Kim YU. Koh BH. Hwang SS. Kim S.-H. Lépine F. Cho Y.-H. Lee GR. Immunology 2010; 129: 578
    • 4c Hooi DS. Bycroft BW. Chhabra SR. Williams P. Pritchard DI. Infect. Immun. 2004; 72: 6463
    • 4d Legendre C. Reen FJ. Mooij MJ. McGlacken GP. Adams C. O’Gara F. Infect. Immun. 2012; 80: 3985
    • 5a Cornforth JW. James AT. Biochem. J. 1956; 63: 124
    • 5b Lightbown JW. Nature 1950; 166: 356
  • 6 Lightbown JW. Jackson FL. Biochem. J. 1956; 63: 130
  • 7 Meunier B. Madgwick SA. Reil E. Oettmeier W. Rich PR. Biochemistry 1995; 34: 1076
  • 8 Hazan R. Que YA. Maura D. Strobel B. Majcherczyk PA. Hopper LR. Wilbur DJ. Hreha TN. Barquera B. Rahme LG. Curr. Biol. 2016; 26: 195
  • 9 Szamosvári D. Böttcher T. Angew. Chem. Int. Ed. Engl. 2017; 56: 7271
  • 10 Lightbown JW. Jackson FL. Biochem. J. 1954; 58: xlix
  • 11 Hoffman LR. Déziel E. D’Argenio DA. Lépine F. Emerson J. McNamara S. Gibson RL. Ramsey BW. Miller SI. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 19890
  • 12 Hu W. Lin J.-P. Song L.-R. Long Y.-Q. Org. Lett. 2015; 17: 1268
  • 13 Woschek A. Mahout M. Mereiter K. Hammerschmidt F. Synthesis 2007; 10: 1517
  • 14 Dulcey CE. Dekimpe V. Fauvelle D.-A. Milot S. Groleau M.-C. Doucet N. Rahme LG. Lépine F. Déziel E. Cell Chem. Biol. 2013; 20: 1481
  • 15 Vial L. Lépine F. Milot S. Groleau MC. Dekimpe V. Woods DE. Déziel E. J. Bacteriol. 2008; 190: 5339
  • 16 Kamigiri K. Tokunaga T. Shibazaki M. Setiawan B. Rantiatmodjo RM. Morioka M. Suzuki K. J. Antibiot. 1996; 49: 823
  • 17 Pistorius D. Li Y. Sandmann A. Müller R. Mol. BioSyst. 2011; 7: 3308
  • 18 Kunze B. Höfle G. Reichenbach H. J. Antibiot. 1987; 40: 258
  • 19 Nachtigall J. Schneider K. Nicholson G. Goodfellow M. Zinecker H. Imhoff JF. Süssmuth RD. Fiedler H.-P. J. Antibiot. 2010; 63: 567
  • 20 Kitagawa W. Tamura T. J. Antibiot. 2008; 61: 680
  • 21 Kogut M. Lightbown JW. Biochem. J. 1962; 84: 368
  • 22 Voggu L. Schlag S. Biswas R. Rosenstein R. Rausch C. Götz F. J. Bacteriol. 2006; 188: 8079
  • 23 Collins MD. Jones D. Microbiol. Rev. 1981; 45: 316
    • 24a Jormakka M. Törnroth S. Byrne B. Iwata S. Science 2002; 295: 1863
    • 24b Iverson TM. Luna-Chavez C. Croal LR. Cecchini G. Rees DC. J. Biol. Chem. 2002; 277: 16124
    • 24c Matsumoto Y. Tosha T. Pisliakov AV. Hino T. Sugimoto H. Nagano S. Sugita Y. Shiro Y. Nat. Struct. Mol. Biol. 2012; 19: 238
  • 25 Spahich NA. Vitko NP. Thurlow LR. Temple B. Richardson AR. Mol. Microbiol. 2016; 100: 759
  • 26 Filkins LM. Graber JA. Olson DG. Dolben EL. Lynd LR. Bhuju S. O’Toole GA. J. Bacteriol. 2015; 197: 2252