Synlett 2018; 29(05): 621-626
DOI: 10.1055/s-0036-1591893
letter
© Georg Thieme Verlag Stuttgart · New York

Carbonylative Synthesis of Thiochromenones via Palladium-Catalyzed tert-Butyl Isocyanide Insertion

Fang-Ling Zhang
College of Pharmaceutic Science, Soochow University, SuZhou, 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Zhen-Bang Chen
College of Pharmaceutic Science, Soochow University, SuZhou, 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Kui Liu
College of Pharmaceutic Science, Soochow University, SuZhou, 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Qing Yuan
College of Pharmaceutic Science, Soochow University, SuZhou, 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Qing Jiang
College of Pharmaceutic Science, Soochow University, SuZhou, 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Yong-Ming Zhu*
College of Pharmaceutic Science, Soochow University, SuZhou, 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 16 October 2017

Accepted after revision: 18 December 2017

Publication Date:
23 January 2018 (online)

Abstract

A flexible and efficient carbonylative synthesis of thiochromenones from the commercially available materials by utilizing tert-butyl isocyanide as carbonyl source has been developed. This methodology efficiently constructs thiochromenones in moderate to excellent yields with the advantages of wide range of substrates and being applicable to library synthesis.

Supporting Information

 
  • References and Notes

    • 1a Clayden J. Maclellan P. Beilstein J.Org. Chem. 2011; 7: 582
    • 1b Ramalingam K. Thyvelikakath GX. Berlin KD. Chesnut RW. Brown RA. Durham NN. Ealick SE. Van H D. J. Med. Chem. 1977; 20: 847
    • 1c Razdan RK. Bruni RJ. Mehta AC. Weinhardt KK. Papanastassiou ZB. J. Med. Chem. 1978; 21: 643
    • 1d Nakib TA. Bezjak V. Meegan MJ. Chandy R. Eur. J. Med. Chem. 1990; 25: 455
    • 1e Lee JI. Lee JH. Food Sci. Bio­technol. 2014; 23: 957
    • 1f Sangeetha S. Muthupandi P. Sekar G. Org. Lett. 2015; 17: 6006
    • 1g Shen C.-R. Spannenberg A. Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 5067
  • 2 Nakazumi H. Ueyama T. Kitao T. J. Heterocycl. Chem. 1985; 22: 1593
  • 3 Nakazumi H. Ueyama T. Kitao T. J. Heterocycl. Chem. 1984; 21: 193
  • 4 Couquelet J. Tronche P. Niviere P. Andraud G. Trav. Soc. Pharm. Montpellier 1963; 23: 214
  • 5 Holshouser MH. Loeffler LJ. Hall IH. J. Med. Chem. 1981; 24: 853
  • 6 Razdan RK. Bruni RJ. Mehta AC. Weinhardt KK. Papanastassiou ZB. J. Med. Chem. 1978; 21: 643
  • 7 Dhanak D. Keenan RM. Burton G. Kaura A. Darcy MG. Shah DH. Ridgers LH. Breen A. Lavery P. Tew DG. Bioorg. Med. Chem. Lett. 1998; 8: 3677
    • 8a Kitani S. Sugawara K. Tsutsumi K. Morimoto T. Kakiuchi K. Chem. Commun. 2008; 18: 2103
    • 8b Kakiuchi K. Zhang Y. Tanimoto H. Nishiyama Y. Morimoto T. Synlett 2012; 23: 367
    • 8c Sugiura R. Kozaki R. Kitani S. Gosho Y. Tanimoto H. Nishiyama Y. Morimoto T. Kakiuchi K. Tetrahedron 2013; 69: 3984
    • 9a Fuchs FC. Eller GA. Holzer W. Molecules 2009; 14: 3814
    • 9b Xiong D.-L. Zhou W.-X. Lu Z.-W. Zeng S.-P. Wang J. Chem. Commun. 2017; 53: 6844
    • 9c Jenifer Vijay TA. Nandeesh KN. Raghavendra GM. Rangappa KS. Mantelingu K. Tetrahedron Lett. 2013; 54: 6533
    • 9d Kobayashi K. Kobayashi A. Ezaki K. Heterocycles 2012; 85: 1997
    • 9e Kim HY. Song E. Oh K. Org. Lett. 2017; 19: 312
    • 9f Willy B. Frank W. Müller TJ. Org. Biomol. Chem. 2010; 8: 90
    • 9g Szamosvári D. Reichle VF. Jureschi M. Böttcher T. Chem. Commun. 2016; 52: 13440
    • 9h Yang X. Li S. Liu H. Jiang Y. Fu H. RSC Adv. 2012; 2: 6549
    • 10a Schneller SW. Adv. Heterocycl. Chem. 1975; 18: 59
    • 10b Nakazumi H. Wanatabe S. Kitaguchi T. Kitao T. Bull. Chem. Soc. Jpn. 1990; 63: 847
    • 11a Inami T. Kurahashi T. Matsubara S. Org. Lett. 2014; 16: 5660
    • 11b Bouisseau A. Glancy J. Willis MC. Org. Lett. 2016; 18: 5676
    • 12a Qiu GY.S. Ding Q.-P. Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 12b Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 12c Song B.-R. Xu B. Chem. Soc. Rev. 2017; 46: 1103
    • 13a Passerini M. Simone L. Gazz. Chim. Ital. 1921; 51: 126
    • 13b Passerini M. Ragni G. Gazz. Chim. Ital. 1931; 61: 964
    • 13c Ugi I. Meyr R. Fetzer U. Steinbrückner C. Angew. Chem. 1959; 71: 386
    • 13d Ugi I. Steinbrückner C. Angew. Chem. 1960; 72: 267
    • 13e Ugi I. Angew. Chem., Int. Ed. Engl. 1962; 1: 8

      For some recent reports on isocyanides insertion to form C–C bonds, see:
    • 14a Tobisu M. Imoto S. Ito S. Chatani N. J. Org. Chem. 2010; 75: 4835
    • 14b Nanjo T. Tsukano C. Takemoto Y. Org. Lett. 2012; 14: 4270
    • 14c Tang T. Fei X.-D. Ge Z.-Y. Chen Z. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2013; 78: 3170
    • 14d Lei C.-H. Wang D.-X. Zhao L. Zhu J. Wang M.-X. J. Am. Chem. Soc. 2013; 135: 4708
    • 14e Chen Z.-B. Zhang Y. Yuan Q. Zhang F.-L. Zhu Y.-M. Shen J.-K. J. Org. Chem. 2016; 81: 1610

      For some recent reports on isocyanides insertion to form intramolecular C–N bonds, see:
    • 15a Tyagi V. Khan S. Giri A. Gauniyal HM. Sridhar B. Chauhan PM. S. Org. Lett. 2012; 14: 3126
    • 15b Wang Y. Zhu Q. Adv. Synth. Catal. 2012; 354: 1902
    • 15c Pan Y.-Y. Wu Y.-N. Chen Z.-Z. Hao W.-J. Li G. Tu S.-J. Jiang B. J. Org. Chem. 2015; 80: 5764
    • 15d Liu Y.-J. Xu H. Kong W.-J. Shang M. Dai H.-X. Yu J.-Q. Nature 2014; 515: 389
    • 15e Jiang X. Tang T. Wang J.-M. Chen Z. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2014; 79: 5082

      For some recent reports on isocyanides insertion to form intramolecular C–N bonds, see:
    • 16a Liu B. Yin M. Gao H. Wu W. Jiang H. J. Org. Chem. 2013; 78: 3009
    • 16b Geden JV. Pancholi AK. Shipman M. J. Org. Chem. 2013; 78: 4158

      For some recent reports on isocyanides insertion to form C–O bonds, see:
    • 17a Saluste CG. Whitby RJ. Furber M. Tetra­hedron Lett. 2001; 42: 6191
    • 17b Soeta T. Tamura K. Ukaji Y. Org. Lett. 2012; 14: 1226
    • 17c Fei X.-D. Ge Z.-Y. Tang T. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2012; 77: 10321
  • 18 Yuan Q. Chen Z.-B. Zhang F.-L. Zhu Y.-M. Org. Biomol. Chem. 2017; 15: 1628
  • 19 Jiang X. Wang J.-M. Zhang Y. Chen Z. Zhu Y.-M. Ji S.-J. Org. Lett. 2014; 16: 3492
    • 20a Takikawa Y. Shimada K. Matsumoto H. Tanabe H. Takizawa S. Chem. Lett. 1983; 12: 1351
    • 20b Paradies J. Synthesis 2010; 947
    • 21a Kondo T. Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 21b Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
  • 22 Modern Alkyne Chemistry . Trost BM. Li C.-J. Wiley-VCH; Weinheim: 2014: 9
  • 23 General Procedure In a 15 mL sealed tube equipped with a magnetic stirring bar were added 1 (1 mmol), 2 (0.8 mmol), tert-butyl isocyanide (1.2 mmol, 136 μL), Pd(OAc)2 (0.03 mmol, 7 mg), DPEPhos (0.06 mmol, 32 mg), Cs2CO3 (0.8 mmol, 261 mg), and anhydrous DMF (2.0 mL). The tube was purged with argon, and the contents were stirred at 100 °C for 2 h. Then Na2S·9H2O (1.2 mmol, 240 mg) was added for 2 h. After reaction completion, the mixture was filtered through a pad of Celite, and DMF was removed by a vacuum. The combined filtrates were refluxed in THF (15 mL) and oxalic acid (1 M, 3 mL) for 8 h. The solvents were removed under reduced pressure, then poured into brine (20 mL) and extracted by ethyl acetate (3 × 30 mL). The combined organic layers were dried (Na2SO4) and evaporated. The residue was purified on a silica gel column using petroleum ether/ethyl acetate as the eluent to give the pure target product.
  • 24 2-(2-Fluorophenyl)-4H-thiochromen-4-one (3j) Yellow solid (116 mg, 57%); mp 128–130 °C. 1H NMR (400 MHz, CDCl3): δ = 8.56 (d, J = 7.9 Hz, 1 H), 7.65 (d, J = 3.1 Hz, 2 H), 7.56 (dd, J = 13.0, 5.6 Hz, 2 H), 7.48 (dd, J = 13.2, 7.1 Hz, 1 H), 7.29 (d, J = 7.5 Hz, 1 H), 7.21 (d, J = 12.4 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 180.6 (s), 160.6 (s), 158.1 (s), 147.1 (s), 138.2 (s), 132.2 (d, J C-F = 8.4 Hz), 131.8 (s), 131.0 (s), 130.3 (d, J C-F = 1.9 Hz), 128.8 (s), 128.0 (s), 127.0 (d, J C-F = 3.7 Hz), 126.5 (s), 124.9 (d, J C-F = 3.8 Hz), 124.6 (d, J C-F = 13.1 Hz), 117.0 (s), 116.8 (s). IR (KBr): 1627, 1593, 1439, 1325, 1098, 758, 732, 685 cm–1. HRMS: m/z calcd for C15H10FOS [M + H]+: 257.0437; found: 257.0428.
  • 25 2-(Thiophen-3-yl)-4H-thiochromen-4-one (3n) Yellow solid (78 mg, 40%); mp 135–140 °C. 1H NMR (400 MHz, CDCl3): δ = 8.53 (d, J = 8.0 Hz, 1 H), 7.78 (s, 1 H), 7.65–7.43 (m, 6 H). 13C NMR (101 MHz, CDCl3): δ = 181.2 (s), 147.0 (s), 137.8 (s), 137.3 (s), 131.8 (s), 131.2 (s), 128.7 (s), 127.9 (s), 127.7 (s), 126.5 (s), 125.4 (s), 125.2 (s), 122.2 (s). IR (KBr): 3094, 1605, 1582, 1543, 1329, 1101, 774, 738, 631 cm–1. HRMS: m/z calcd for C13H9OS2 [M + H]+: 245.0096; found: 245.0093.
  • 26 8-Fluoro-2-(p-tolyl)-4H-thiochromen-4-one (5a) Yellow solid (143 mg, 66%); mp 160–164 °C. 1H NMR (400 MHz, CDCl3): δ = 8.35 (d, J = 8.0 Hz, 1 H), 7.62 (d, J = 8.0 Hz, 2 H), 7.52 (dd, J = 13.4, 7.9 Hz, 1 H), 7.39 (t, J = 8.7 Hz, 1 H), 7.32 (d, J = 7.8 Hz, 2 H), 7.24 (s, 1 H), 2.44 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 180.2 (s), 159.3 (s), 156.8 (s), 152.2 (s), 141.8 (s), 133.8 (s), 132.7 (s), 132.6 (s), 130.2 (s), 127.9 (d, J C-F = 7.8 Hz), 127.0 (s), 124.3 (s), 123.0 (s), 117.2 (d, J C-F = 19.6 Hz), 21.5 (s). IR (KBr): 2922, 1620, 1601, 1549, 1247, 1129, 819 798, 709 cm–1. HRMS: m/z calcd for C16H12FOS [M + H]+: 271.0594; found: 271.0598.
  • 27 N-(tert-Butyl)-1-(2-fluorophenyl)-3-phenylprop-2-yn-1-imine (8) Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.67 (t, J = 8.6 Hz, 1 H), 7.53 (d, J = 7.8 Hz, 2 H), 7.43–7.33 (m, 4 H), 7.17 (t, J = 7.5 Hz, 1 H), 7.13–7.05 (m, 1 H), 1.58 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 161.9 (s), 159.4 (s), 144.6 (s), 133.4 (s), 131.8 (s), 131.0 (d, J C-F = 8.4 Hz), 130.4 (d, J C-F = 2.4 Hz), 129.8 (s), 129.4 (d, J C-F = 11.0 Hz), 128.7 (s), 124.2 (d, J C-F = 3.7 Hz), 122.0 (s), 116.5 (s), 116.3 (s), 98.9 (d, J C-F = 2.9 Hz), 85.0 (s), 57.9 (s), 29.6 (s). IR (KBr): 2968, 1609, 1590, 1485, 1305, 1222, 752, 648. HRMS: m/z calcd for C19H18FN [M + H]+: 280.1502; found: 280.1509.