CC BY ND NC 4.0 · SynOpen 2018; 02(01): 0006-0016
DOI: 10.1055/s-0036-1591891
paper
Copyright with the author

Thiocyanation of Pyrazoles Using KSCN/K2S2O8 Combination

T. Songsichan
,
P. Katrun
,
O. Khaikate
,
D. Soorukram
,
M. Pohmakotr
,
V. Reutrakul
,
We thank the Thailand Research Fund (BRG5850012 and IRN58W0005), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Postgraduate Education Research Development Office, Office of the Higher Education Commission, Ministry of Education, Mahidol University under the National Research Universities Initiative, PICS6663 ISMA (France/Thailand), and the Franco–Thai Cooperation Program in Higher Education and Research (PHC Siam 2017) for financial support.
Further Information

Publication History

Received: 17 October 2017

Accepted after revision: 16 December 2017

Publication Date:
23 January 2018 (online)

Abstract

A convenient and practical thiocyanation of pyrazoles is reported employing a combination of KSCN and K2S2O8 in dimethyl sulfoxide (DMSO). The salient features of the present reaction include environmentally benign reagents and solvents, and simple operation. The reaction shows wide functional group tolerance and gives moderate to excellent yields.

Supporting Information

 
  • References

    • 1a Solladie G. Synthesis of Sulfides, Sulfoxides and Sulfones . In Comprehensiue Organic Synthesis . Vol. 6 Trost BM. Fleming I. Pergamon Press; Oxford: 1991: 133
    • 1b Ogura K. Sulfur Stabilization . In Comprehensive Organic Synthesis . Vol. 1 Trost BM. Fleming I. Pergamon Press; Oxford: 1991: 505
    • 1c Zhang D. Xu W. Jia C. Li H. Zhu D. ARKIVOC 2003; 165
    • 1d Gingras M. Chabre YM. Roy M. Roy R. Chem. Soc. Rev. 2013; 42: 4823
    • 1e Garoufis A. Hadjikakou SK. Hadjiliadis N. Coord. Chem. Rev. 2009; 253: 1384
    • 1f Ali V. Nozaki T. Clin. Microbiol. Rev. 2007; 20: 164
    • 1g Faucher A.-M. White PW. Brochu C. Grand-Maître C. Rancourt J. Fazal G. J. Med. Chem. 2004; 47: 18
    • 1h Dutta S. Abe H. Aoyagi S. Kibayashi C. Gates KS. J. Am. Chem. Soc. 2005; 127: 15004
    • 1i Ilardi EA. Vitaku E. Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 1j Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 2a Owens RG. In Fungicides: An Advanced Treatise . Torgeson DC. Academic Press; New York: 1967. Chapter 5, p 14
    • 2b Houmam A. Hamed EM. Still IW. J. J. Am. Chem. Soc. 2003; 125: 7258
    • 2c MacKinnon DL. Farrell AP. Environ. Toxicol. Chem. 1992; 11: 1541
    • 2d Pham AT. Ichiba T. Yoshida WY. Scheuer PJ. Tetrahedron Lett. 1991; 32: 4843
    • 2e Patil AD. Freyer AJ. Reichwein R. Carte B. Killmer LB. Faucette L. Johnson RK. Tetrahedron Lett. 1997; 38: 363
    • 2f Pina IC. Gautschi JT. Wang G.-Y.-S. Sanders ML. Schmitz FJ. France D. Cornell-Kennon S. Sambucetti LC. Remiszewski SW. Perez LB. Bair KW. Crews P. J. Org. Chem. 2003; 68: 3866
    • 2g Yasman Edrada RA. Wray V. Proksch P. J. Nat. Prod. 2003; 66: 1512
    • 2h Elhalem E. Bailey BN. Docampo R. Ujváry I. Szajnman SH. Rodriguez JB. J. Med. Chem. 2002; 45: 3984
    • 2i Promkatkaew M. Gleeson D. Hannongbua S. Gleeson MP. Chem. Res. Toxicol. 2014; 27: 51
    • 3a Coates RM. Ho AW. W. J. Am. Chem. Soc. 1969; 91: 7544
    • 3b Wei Z.-L. Kozikowski AP. J. Org. Chem. 2003; 68: 9116
    • 3c Brock NL. Nikolay A. Dickschat JS. Chem. Commun. 2014; 5487
    • 4a Verkruijsse HD. Brandsma L. Synthesis 1991; 818
    • 4b Still IW. J. Toste FD. J. Org. Chem. 1996; 61: 7677
    • 4c Ke F. Qu Y. Jiang Z. Li Z. Wu D. Zhou X. Org. Lett. 2011; 13: 454
    • 5a Riemschneider R. Wojahn F. Orlick G. J. Am. Chem. Soc. 1951; 73: 5905
    • 5b Riemschneider R. J. Am. Chem. Soc. 1956; 78: 844
    • 5c Guo L.-N. Gu Y.-R. Yang H. Hu J. Org. Biomol. Chem. 2016; 14: 3098
    • 6a Bunyagidj C. Piotrowska H. Aldridge MH. J. Org. Chem. 1981; 46: 3335
    • 6b Toste FD. LaRonde F. Still IW. J. Tetrahedron Lett. 1995; 36: 2949
    • 7a Prabhu KR. Ramesha AR. Chandrasekaran S. J. Org. Chem. 1995; 60: 7142
    • 7b Sengupta D. Basu B. Tetrahedron Lett. 2013; 54: 2277
  • 8 Johnson TB. Douglass IB. J. Am. Chem. Soc. 1939; 61: 2548
  • 9 Blanco JM. Caamano O. Fernández F. Gómez G. López C. Tetrahedron: Asymmetry 1992; 3: 749

    • Some examples of Sandmeyer type reactions to prepare thiocyanates:
    • 10a Guy RG. Lau R. Rahman AU. Swinbourne FJ. Spectrochim. Acta, Part A 1997; 53: 361
    • 10b Butt N. Guy RG. Winbourne FJ. Spectrochim. Acta, Part A 1995; 51: 1715
    • 10c Bangher A. Guy RG. Pichot Y. Sillence JM. Steel CJ. Swinbourne FJ. Tamiatti K. Spectrochim. Acta, Part A 1995; 51: 1703
    • 10d Whiteker GT. Lippard SJ. Tetrahedron Lett. 1991; 32: 5019
    • 10e Yokoyama M. Ohteki H. Kurauchi M. Hoshi K. Yanagisawa E. Suzuki A. Imamoto T. J. Chem. Soc., Perkin Trans. 1 1984; 2635
    • 10f Barbero M. Degani I. Diulgheroff N. Dughera S. Fochi R. Synthesis 2001; 585
    • 11a Fujiki K. Yoshida E. Synth. Commun. 1999; 29: 3289
    • 11b Takagi K. Takachi H. Sasaki K. J. Org. Chem. 1995; 60: 6552
    • 11c Teng F. Yu J.-T. Yang H. Jiang Y. Cheng J. Chem. Commun. 2014; 12139
    • 12a Suzuki H. Abe H. Synth. Commun. 1996; 18: 3413
    • 12b Sun N. Che L. Mo W. Hu B. Shen Z. Hu X. Org. Biomol. Chem. 2015; 13: 691

      For selected examples, see:
    • 13a Nair V. Nair LG. Tetrahedron Lett. 1998; 39: 4585
    • 13b Yang H. Duan X.-H. Zhao J.-F. Guo L.-N. Org. Lett. 2015; 17: 1998
    • 13c Yang X. She Y. Chong Y. Zhai H. Zhu H. Chen B. Huang G. Yan R. Adv. Synth. Catal. 2016; 358: 3130
    • 13d Terent’ev AO. Yu Sharipov M. Glinuskin AP. Krylov IB. Gaidarenko DV. Nikishin GI. Mendeleev Commun. 2016; 26: 226
    • 13e Zhang X.-Z. Ge D.-L. Chen S.-Y. Yu X.-Q. RSC Adv. 2016; 6: 66320
    • 13f Jiang G. Zhu C. Li J. Wu W. Jiang H. Adv. Synth. Catal. 2017; 359: 1208
    • 14a Ashish KT. Anil M. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2006; 45: 489
    • 14b Mert S. Kasımoğulları R. İça T. Çolak F. Altun A. Ok S. Eur. J. Med. Chem. 2014; 78: 86
    • 15a Sangapure SS. Bodke Y. Raga B. Indian J. Heterocycl. Chem. 2001; 11: 31
    • 15b Lupsor S. Aonofriesei F. Iovu M. Med. Chem. Res. 2012; 21: 3035
    • 15c Kumar R. Arora J. Ruhil S. Phougat N. Chhillar AK. Prasad AK. Adv. Chem. 2014; 329681
  • 16 Nimavat KS. Popat KH. Indian J. Heterocycl. Chem. 2007; 16: 333
    • 17a Udupi RH. Bhat AR. Krishna K. Indian J. Heterocycl. Chem. 1998; 8: 143
    • 17b Abd-El GawadN. M. Georgey HH. Ibrahim NA. Amin NH. Abdelsalam RM. Arch. Pharmacal. Res. 2012; 35: 807
  • 18 Ouyang G. Cai X.-J. Chen Z. Song B.-A. Bhadury PS. Yang S. Jin L.-H. Xue W. Hu D.-Y. Zeng S. J. Agric. Food Chem. 2008; 56: 10160
  • 19 Rangaswamy J. Kumar HV. Harini ST. Naik N. Bioorg. Med. Chem. Lett. 2012; 22: 4773
  • 20 Hassan GS. Kadry HH. Abou-Seri SM. Ali MM. El-Din MahmoudA. E. Bioorg. Med. Chem. 2011; 19: 6808
  • 21 Turan-Zitouni G. Chevallet P. Kiliç FS. Erol K. Eur. J. Med. Chem. 2000; 35: 635
  • 22 Chetan BP. Mulwar VV. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2000; 44: 232
  • 23 Palaska E. Aytemir M. Uzbay İT. Erol D. Eur. J. Med. Chem. 2001; 36: 539
  • 24 Souza FR. Souza VT. Ratzlaff V. Borges LP. Oliveira MR. Bonacorso HG. Zanatta N. Martins MA. P. Mello CF. Eur. J. Pharmacol. 2002; 451: 141
  • 25 Ashok K. Archana Sharma S. Indian J. Heterocycl. Chem. 2001; 9: 197
  • 26 Baraldi PG. Caciari B. Romagnoli R. Spalluto G. Moro S. Klotz K.-N. Leung E. Varani K. Gessi S. Merighi S. Borea PA. J. Med. Chem. 2000; 43: 4768
    • 27a Sauter H. Steglich W. Anke T. Angew. Chem. Int. Ed. 1999; 38: 1328
    • 27b Shiga Y. Okada I. Ikeda Y. Takizawa E. Fukuchi T. J. Pestic. Sci. 2003; 28: 313
    • 27c Ohno R. Watanabe A. Matsukawa T. Ueda T. Sakurai H. Hori M. Hirai K. J. Pestic. Sci. 2004; 29: 15

      For selected examples, see:
    • 28a Chakrabarty M. Sarkar S. Tetrahedron Lett. 2003; 44: 8131
    • 28b Yadav JS. Reddy BV. S. Shubashree S. Sadashiv K. Tetrahedron Lett. 2004; 45: 2951
    • 28c Wu G. Liu Q. Shen Y. Wu W. Wu L. Tetrahedron Lett. 2005; 46: 5831
    • 28d Yadav JS. Reddy BV. S. Krishna AD. Reddy ChS. Narsaiah AV. Synthesis 2005; 961
    • 28e Yadav JS. Reddy BV. S. Krishna BB. M. Synthesis 2008; 3779
    • 28f Pan X.-Q. Lei M.-Y. Zou J.-P. Zhang W. Tetrahedron Lett. 2009; 50: 347
    • 28g Iranpoor N. Firouzabadi H. Khalili D. Shahin R. Tetrahedron Lett. 2010; 51: 3508
    • 28h Nikoofar K. Chem. Sci. Trans. 2013; 2: 691
    • 28i Fotouhi L. Nikoofar K. Tetrahedron Lett. 2013; 54: 2903
    • 28j Fan W. Yang Q. Xu F. Li P. J. Org. Chem. 2014; 79: 10588
    • 28k Zhu D. Chang D. Shi L. Chem. Commun. 2015; 7180
    • 28l Mitra S. Ghosh M. Mishra S. Hajra A. J. Org. Chem. 2015; 80: 8275
    • 28m Yang D. Yan K. Wei W. Li G. Lu S. Zhao C. Tian L. Wang H. J. Org. Chem. 2015; 80: 11073
    • 28n Zhang H. Wei Q. Wei S. Qu J. Wang B. Eur. J. Org. Chem. 2016; 3373
    • 28o Khalili D. New J. Chem. 2016; 40: 2547
    • 28p Venkanna P. Rajanna KC. Kumar MS. Venkateswarlu M. Ali MM. Synlett 2016; 27: 237
    • 28q Chen J. Wang T. Wang T. Lin A. Yao H. Xu J. Org. Chem. Front. 2017; 4: 130
    • 28r Mete TB. Khopade TM. Bhat RG. Tetrahedron Lett. 2017; 58: 415
    • 29a Finar IL. Godfrey KE. J. Chem. Soc. 1954; 2293
    • 29b Kinugawa J. Ochiai M. Chem. Pharm. Bull. 1964; 12: 23
    • 29c Thiruvikraman SV. Seshadri S. Bull. Chem. Soc. Jpn. 1985; 58: 785
    • 29d Kokorekin VA. Sigacheva VL. Petrosyan VA. Tetrahedron Lett. 2014; 55: 4306
  • 30 Vorona S. Artamonova T. Zevatskii Y. Myznikov L. Synthesis 2014; 46: 781