Synlett 2018; 29(04): 430-432
DOI: 10.1055/s-0036-1591890
cluster
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of F-Ring Fragments of Kibdelone C via Desymmetrizing Bromolactonization of 1,4-Dihydrobenzoic Acid

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA   Email: sfmartin@mail.utexas.edu
,
Stephen F. Martin*
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA   Email: sfmartin@mail.utexas.edu
› Author Affiliations
We thank the National Institutes of Health (GM31077) and the Robert A. Welch Foundation (F-0652) for generous support of this research.
Further Information

Publication History

Received: 30 October 2017

Accepted after revision: 15 December 2017

Publication Date:
15 January 2018 (online)

Published as part of the Cluster Alkene Halofunctionalization

Abstract

We previously reported a bifunctional organic catalyst that promotes highly efficient enantioselective halolactonizations of a broad array of olefinic acids. As part of that work, we demonstrated the desymmetrization of a prochiral substrate through a catalytic enantioselective halolactonization, and we report herein the application of one such desymmetrization process to the syntheses of F-ring subunit synthons of (+)-kibdelone C.

Supporting Information

 
  • References and Notes

  • 1 Paull DH. Fang C. Donald JR. Pansick AD. Martin SF. J. Am. Chem. Soc. 2012; 134: 11128
  • 2 Fang C. Paull DH. Hethcox JC. Shugrue CR. Martin SF. Org. Lett. 2012; 14: 6290

    • Selected references to highly enantioselective halolactonization protocols:
    • 3a Zhou L. Tan CK. Jiang X. Chen F. Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474
    • 3b Veitch GE. Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
    • 3c Murai K. Matsushita T. Nakamura A. Fukushima S. Shimura M. Fujioka H. Angew. Chem. Int. Ed. 2010; 49: 9174
    • 3d Jiang X. Tan CK. Zhou L. Yeung Y.-Y. Angew. Chem. Int. Ed. 2012; 51: 7771
    • 3e Tungen JE. Nolsøe JM. J. Hansen TV. Org. Lett. 2012; 14: 5884
    • 3f Dobish MC. Johnston JN. J. Am. Chem. Soc. 2012; 134: 6068

    • For reviews, see:
    • 3g Denmark SE. Kuester WE. Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
    • 3h Nolsøe JM. Hansen TV. Eur. J. Org. Chem. 2014; 3051
  • 4 Tan CK. Le C. Yeung Y.-Y. Chem. Commun. 2012; 48: 5791
    • 5a Ikeuchi K. Ido S. Yoshimura S. Asakawa T. Inai M. Hamashima Y. Kan T. Org. Lett. 2012; 14: 6016
    • 5b Wilking M. Muck-Lichtenfeld C. Daniliuc CG. Hennecke U. J. Am. Chem. Soc. 2013; 135: 8133
    • 5c Murai K. Nakajima J. Nakamura A. Fujioka H. Chem. Asian J. 2014; 9: 3511
    • 5d Wilking M. Daniliuc CG. Hennecke U. Chem. Eur. J. 2016; 22: 18601

    • For a review, see:
    • 5e Hennecke U. Wilking M. Synlett 2014; 25: 1633
  • 6 Ratnayake R. Lacey E. Tennant S. Gill JH. Capon RJ. Chem. Eur. J. 2007; 13: 1610
    • 7a Butler JR. Wang C. Bian J. Ready JM. J. Am. Chem. Soc. 2011; 133: 9956
    • 7b Rujirawanich J. Kim S. Ma AJ. Butler JR. Wang YW. Wang C. Rosen M. Posner B. Nijhawan D. Ready JM. J. Am. Chem. Soc. 2016; 138: 10561
  • 8 Sloman DL. Bacon JW. Porco JA. Jr. J. Am. Chem. Soc. 2011; 133: 9952
    • 9a Froese J. Endoma-Arias MA. Hudlicky T. Org. Process Res. Dev. 2014; 18: 801
    • 9b Endoma-Arias MA. Hudlicky T. Tetrahedron Lett. 2011; 52: 6632
  • 10 Dupau P. Epple R. Thomas AA. Fokin VV. Sharpless BK. Adv. Synth. Catal. 2002; 344: 421
  • 11 Rich RH. Lawrence BM. Bartlett PA. J. Org. Chem. 1994; 59: 693
    • 12a Barton DH. R. Crich D. Motherwell WB. Tetrahedron Lett. 1983; 24: 4979
    • 12b Carbain B. Hitchcock PB. Streicher H. Tetrahedron Lett. 2010; 51: 2717
  • 13 Experimental Procedure for ent-5
    N-Bromosuccinimide (3.871 g, 21.75 mmol) was added to a solution of dihydrobenzoic acid (4, 2.7 g, 21.8 mmol) and catalyst ent-1 (0.964 g, 2.18 mmol) in CH2Cl2/PhMe (1:1, 220 mL) at –50 °C, and the solution was stirred for 14 h. The reaction was quenched with sat. aq Na2SO3 (150 mL), and the mixture was allowed to warm to room temperature with vigorous stirring. The layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 × 75 mL). The combined organic layers were washed with 5% aq Na2CO3 (2 × 150 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography, eluting with hexanes/EtOAc (9:1) to give 3.1 g (70%) of ent-5 as a white solid; mp 96–98 °C; spectra matched the previously reported data;14 1H NMR (CDCl3, 400 MHz): δ = 6.10–6.00 (m, 1 H), 5.90 (dddd, J = 9.9, 6.1, 1.8, 1.3 Hz, 1 H), 4.94 (dd, J = 5.7, 3.1 Hz, 1 H), 4.55 (q, J = 3.1 Hz, 1 H), 4.28 (t, J = 6.1 Hz, 1 H), 2.72 (m, 2 H) ppm. [α]D 25 –49.0 (c 1.0, CHCl3). HPLC (210 nm): OD-H (1% i-PrOH/hexanes, 1.0 mL/min): t R (major) = 16.6 min; t R (minor) = 18.0 min. Recrystallization of ent-5 from hexanes (10 mg/100 mL) furnished 1.9 g (45%) of ent-5 as a single enantiomer. HPLC (210 nm): OD-H (1% i-PrOH/hexanes, 1.0 mL/min): t R = 16.6 min.
  • 14 Armstrong A. Braddock C. Jones AX. Clark S. Tetrahedron Lett. 2013; 54: 7004