Synthesis 2018; 50(08): 1687-1698
DOI: 10.1055/s-0036-1591887
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Alkoxycarbonyldifluoromethyl-Substituted Semisquarates and Their Transformations

Takashi Kurohara
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan   eMail: yamamoto-yoshi@ps.nagoya-u.ac.jp
,
Jiang Jiyue
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan   eMail: yamamoto-yoshi@ps.nagoya-u.ac.jp
,
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan   eMail: yamamoto-yoshi@ps.nagoya-u.ac.jp
,
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan   eMail: yamamoto-yoshi@ps.nagoya-u.ac.jp
› Institutsangaben
This research is partially supported by the Platform Project for Supporting in Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research; BINDS) from the Japan Agency for Medical Research and Development.
Weitere Informationen

Publikationsverlauf

Received: 22. November 2017

Accepted after revision: 12. Dezember 2017

Publikationsdatum:
22. Januar 2018 (online)


Abstract

A novel EtO2CCF2-substituted semisquarate is synthesized from diisopropyl squarate by selective 1,2-addition of the Reformatsky reagent derived from BrCF2CO2Et and subsequent rhenium-catalyzed allylic alcohol rearrangement. The compatibility of the highly reactive EtO2CCF2 group in ring transformations of the obtained semisquarate is investigated. Various EtO2CCF2-substituted, highly functionalized compounds, such as quinones, tetronates, cyclopentenones and a bicyclo-[3.2.0]heptenone, are successfully synthesized by ring transformations of the EtO2CCF2-substituted semisquarate. Also, an allylO2CCF2-substituted semisquarate is prepared and converted into the corresponding tetronate. Subsequent palladium-catalyzed deallylation followed by condensation of the resulting carboxylic acid with several amines under mild conditions affords the corresponding α,α-difluoroamides in good yields.

Supporting Information

 
  • References

    • 1a Jeschke P. ChemBioChem 2004; 5: 570
    • 1b Gillis EP. Eastman KJ. Hill MD. Donnelly DJ. Meanwell NA. J. Med. Chem. 2015; 58: 8315

      For reviews, see:
    • 2a Böhm H.-J. Banner D. Bendels S. Kansy M. Kuhn B. Müller K. Obst-Sander U. Stahl M. ChemBioChem 2004; 5: 637
    • 2b Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 2c Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2d Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 3a Wang J. Roselló MS. Aceña JL. Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 3b Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña JL. Soloshonok VA. Izawa K. Liu H. Chem. Rev. 2016; 116: 422

      Selected reviews:
    • 4a Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 4b Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
    • 4c Besset T. Poisson T. Pannecoucke X. Chem. Eur. J. 2014; 20: 16830
    • 4d Charpentier J. Frìh N. Togni A. Chem. Rev. 2015; 115: 650
    • 4e Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
    • 4f Yang X. Wu T. Phipps RJ. Toste FD. Chem. Rev. 2015; 115: 826
    • 5a Yamamoto Y. Kurohara T. Shibuya M. Chem. Commun. 2015; 51: 16357
    • 5b Kurohara T. Shibuya M. Yamamoto Y. Adv. Synth. Catal. 2017; 359: 1413

      For recent reviews, see:
    • 6a Belhomme M.-C. Besset T. Poisson T. Pannecoucke X. Chem. Eur. J. 2015; 21: 12836
    • 6b Yerien DE. Barata-Vallejo S. Postigo A. Chem. Eur. J. 2017; 23: 14676

    • For Reformatsky-type reactions, see:
    • 6c Fürstner A. Synthesis 1989; 571
    • 6d Witkowski S. Rao YK. Premchandran RH. Halushka PV. Fried J. J. Am. Chem. Soc. 1992; 114: 8464
  • 7 Fujikawa K. Fujioka Y. Kobayashi A. Amii H. Org. Lett. 2011; 13: 5560
  • 8 Jung J. Kim E. You Y. Cho EJ. Adv. Synth. Catal. 2014; 356: 2741
    • 9a Benites J. Valderrama JA. Bettega K. Pedrosa RC. Calderon PB. Verrax J. Eur. J. Med. Chem. 2010; 45: 6052
    • 9b Xu K. Xiao Z. Tang YB. Huang L. Chen CH. Ohkoshi E. Lee KH. Bioorg. Med. Chem. Lett. 2012; 22: 2772
    • 9c Prachayasittikul V. Pingaew R. Worachartcheewan A. Nantasenamat C. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Eur. J. Med. Chem. 2014; 84: 247
    • 9d Li J. Zang X. Xiang H. Tong L. Feng F. Xie H. Ding J. Yang C. J. Org. Chem. 2017; 82: 6795
  • 10 Grennberg H. Bäckvall JE. Acta Chem. Scand. 1993; 47: 506
  • 11 Yamamoto Y. Ohno M. Eguchi S. J. Am. Chem. Soc. 1995; 117: 9653
  • 12 Yamamoto Y. Takamizu Y. Kurohara T. Shibuya M. Heterocycles 2017; 95: 525
  • 13 Mao X. Song P. Hao Y. Sun Z. Hu X. Adv. Synth. Catal. 2016; 358: 3719
  • 14 Simeonov SP. Nunes JP. M. Guerra K. Kurteva VB. Afonso CA. M. Chem. Rev. 2016; 116: 5744
  • 15 Hu SL. Xia H. Moore HW. J. Org. Chem. 1991; 56: 6094
  • 16 Tsuji J. Tetrahedron 2015; 71: 6330
  • 17 Murayama T. Yoshida A. Kobayashi T. Miura T. Tetrahedron Lett. 1994; 35: 2271
  • 18 Kunishima M. Kawachi C. Morita J. Terao K. Iwasaki F. Tani S. Tetrahedron 1999; 55: 13159
    • 19a Huisgen R. Proc. Chem. Soc. 1961; 357
    • 19b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 20 Liebeskind LS. Fengil RW. Wirtz KR. Shawe TT. J. Org. Chem. 1988; 53: 2482
    • 21a Jiao P. Kawasaki M. Yamamoto H. Angew. Chem. Int. Ed. 2009; 48: 3333
    • 21b Rosquete LI. Cabrera-Serra MG. Piñero JE. Martín-Rodríguez P. Fernández-Pérez L. Luis JG. McNaughton-Smith G. Abad-Grillo T. Bioorg. Med. Chem. 2010; 18: 4530
    • 22a Itoh T. Sakabe K. Kudo K. Ohara H. Takagi Y. Kihara H. Zagatti P. Renou M. J. Org. Chem. 1999; 64: 252
    • 22b Tang R.-Y. Li G. Yu J.-Q. Nature 2014; 507: 215