Synthesis 2018; 50(07): 1493-1498
DOI: 10.1055/s-0036-1591885
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Pyrazolofuropyrazine via One-Pot SNAr Reaction and Intramolecular Direct C–H Arylation

Shinichiro Fuse*
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan   Email: [email protected]
,
Megumi Inaba
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan   Email: [email protected]
,
Shinichi Sato
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan   Email: [email protected]
,
Manjusha Joshi
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan   Email: [email protected]
,
Hiroyuki Nakamura*
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 26 November 2017

Accepted after revision: 08 December 2017

Publication Date:
11 January 2018 (online)


Abstract

Fused-ring systems containing heterocycles are attractive templates for drug discovery. Biologically active 6-5-5+6 fused-ring systems that possess heterocycles are available, but these require a relatively large number of synthetic steps for preparation. Therefore, pyrazolofuropyrazine was designed as a 6-5-5+6 ring system template that incorporates ready accessibility for drug discovery. Pyrazolofuropyrazines were successfully constructed in only a few steps via one-pot SNAr reaction/intramolecular C–H direct arylation. As a drug candidate, pyrazolofuropyrazine has earned a favorable LogP, although significant biological activity has yet to be established; the ready accessibility of pyrazolofuropyrazine template, however, offers an opportunity for the rapid development of promising new drug candidates.

Supporting Information

 
  • References

  • 1 Bemis GW. Murcko MA. J. Med. Chem. 1996; 39: 2887
    • 2a Tong Y. Przytulinska M. Tao Z.-F. Bouska J. Stewart HD. Park C. Li G. Claiborne A. Kovar P. Chen Z. Merta PJ. Bui M.-H. Olson A. Osterling D. Zhang H. Sham HL. Rosenberg SH. Sowin TJ. Lin N.-H. Bioorg. Med. Chem. Lett. 2007; 17: 5665
    • 2b Tao Z.-F. Li G. Tong Y. Stewart KD. Chen Z. Bui M.-H. Merta P. Park C. Kovar P. Zhang H. Sham HL. Rosenberg SH. Sowin TJ. Lin N.-H. Bioorg. Med. Chem. Lett. 2007; 17: 5944
  • 3 Nugiel DA. Vidwans A. Etzkorn A.-M. Rossi KA. Benfield PA. Burton CR. Cox S. Doleniak D. Seitz SP. J. Med. Chem. 2002; 45: 5224
  • 4 Usui T. Ban HS. Kawada J. Hirokawa T. Nakamura H. Bioorg. Med. Chem. Lett. 2008; 18: 285
  • 5 Minegishi H. Fukashiro S. Ban HS. Nakamura H. ACS Med. Chem. Lett. 2013; 4: 297
  • 6 Minegishi H. Futamura Y. Fukashiro S. Muroi M. Kawatani M. Osada H. Nakamura H. J. Med. Chem. 2015; 58: 4230
  • 7 Taylor RD. MacCoss M. Lawson AD. G. J. Med. Chem. 2014; 57: 5845
  • 8 Kmentova I. Sutherland HS. Palmer BD. Blaser A. Franzblau SG. Wan B. Wang Y. Ma Z. Denny WA. Thompson AM. J. Med. Chem. 2010; 53: 8421
  • 9 Kumar KS. Adepu R. Kapavarapu R. Rambabu D. Krishna GR. Reddy CM. Priya KK. Parsa KV. L. Pal M. Tetrahedron Lett. 2012; 53: 1134
  • 10 Liu J. Fitzgerald AE. Mani NS. J. Org. Chem. 2008; 73: 2951
  • 11 Nakao S. Mabuchi M. Shimizu T. Itoh Y. Takeuchi Y. Ueda M. Mizuno H. Shigi N. Ohshio I. Jinguji K. Ueda Y. Yamamoto M. Furukawa T. Aoki S. Tsujikawa K. Tanaka A. Bioorg. Med. Chem. Lett. 2014; 24: 1071
  • 12 We speculated that another 6a reacted with 13a. This intermolecular reaction seemed faster than the desired intramolecular reaction.
  • 13 AlCl3- or TFA-mediated SNAr reaction of 13a was examined in order to activate chloropyrazine moiety. However, the desired product 1a was not obtained.
  • 14 Franck P. Hostyn S. Dajka-Halász B. Polonka-Bálint Á. Monsieurs K. Mátyus P. Maes BU. W. Tetrahedron 2008; 64: 6030
  • 15 Thermal elipsoids are set at 35% probability level. CCDC-1579579 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 16 Calculated with the suitable algorithm by using ChemBioDraw Ultra 14.0.
  • 17 Waring MJ. Expert Opin. Drug Discovery 2010; 5: 235
  • 18 Pelleter J. Renaud F. Org. Process Res. Dev. 2009; 13: 698
  • 19 Bagley MC. Baashen M. Paddock VL. Kipling D. Davis T. Tetrahedron 2013; 69: 8429
  • 20 Marchetti F. Pettinari C. Cingolani A. Brocanelli L. Rossi M. Caruso F. J. Organomet. Chem. 1999; 580: 344