CC BY-ND-NC 4.0 · SynOpen 2018; 02(01): 0001-0005
DOI: 10.1055/s-0036-1591869
letter
Copyright with the author

Synthesis of Functionalized Dihydropyrido[2,3-d]pyrimidines in Aqueous Medium

Saeed Balalaie*
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   eMail: balalaie@kntu.ac.ir
b   Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
,
Hamed Esmaeilabadi
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   eMail: balalaie@kntu.ac.ir
,
Saber Mehrparvar
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   eMail: balalaie@kntu.ac.ir
,
Frank Rominger
c   Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Fatima Hamdan
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   eMail: balalaie@kntu.ac.ir
,
Hamid Reza Bijanzadeh
d   Department of Biophysics, Tarbiat Modares University, ­Tehran, Iran
› Institutsangaben
We gratefully acknowledge the Iran National Science Foundation (INSF) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 08. August 2017

Accepted after revision: 27. November 2017

Publikationsdatum:
18. Januar 2018 (online)


Dedicated to Prof. Dr. Uli Kazmaier on the occasion of his birthday

Abstract

Synthesis of functionalized 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one from a cascade reaction between 3-formylchromone, malononitrile, diammonium hydrogen phosphate, and aromatic aldehydes in aqueous media is described.

Supporting Information

 
  • References and Notes

  • 1 Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958; and references cited therein
    • 2a Zhang W. Gue BW. Jr. Green Techniques for Organic Synthesis and Medicinal Chemistry. Wiley&Sons; Chiechester: 2012
    • 2b Science of Synthesis Water in Organic Synthesis . Kobayashi S. Thieme Verlag; Stuttgart: 2012
    • 2c Simon M.-O. Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 2d Chanda A. Fokin VV. Chem. Rev. 2009; 109: 725
    • 2e Li C.-J. Chen L. Chem. Soc. Rev. 2006; 35: 68
    • 3a Green Synthetic Approaches for Biologically Relevant Heterocycles. Brahmachari G. Elsevier; Amsterdam: 2014
    • 3b Aqueous Microwave Assisted Chemistry, Synthesis and Catalysis . Polshettiwar V. Varma RS. RSC Publishing; Cambridge: 2010
    • 4a Green Chemistry: Synthesis of Bioactive Heterocycles. Ameta KL. Dandia A. Springer; India: 2014
    • 4b Balalaie S. Ramezani KejaniR. Ghabraie E. Darvish F. Rominger F. Hamdan F. Bijanzadeh HR. J. Org. Chem. 2017; 82: 12141
    • 4c Balalaie S. Mirzaie S. Nikbakht A. Hamdan F. Rominger F. Navari R. Bijanzadeh HR. Org. Lett. 2017; 19: 6124
    • 5a Hilton S. Naud S. Caldwell J. Boxall K. Burns S. Anderson VE. Antoni L. Allen CE. Pearl LH. Oliver AW. Aherne GW. Garrett MD. Collins I. Bioorg. Med. Chem. 2010; 459
    • 5b Yonezawa S. Tamura Y. Kooriyama Y. Sakaguchi G. PCT Int. Appl. WO2010047372, 2010
    • 5c Steinig AG. Mulvihill MJ. Wang J. Werner DS. Weng Q. Kan J. Coate H. Chen X. U. S. Pat. Appl. US2009197862, 2009
    • 6a Goldstein DM. Gong L. Michoud C. Palmer WS. Sidduri A. PCT Int. Appl. WO 2008028860, 2008
    • 6b Kling A. Backfisch G. Delzer J. Geneste H. Graef C. Hornberger W. Lange UE. W. Lauterbach A. Seitz W. Subkowski T. Bioorg. Med. Chem. 2003; 11: 1319
    • 6c Bolliger JL. Oberholzer M. Frech CM. Adv. Synth. Catal. 2011; 353: 945
    • 7a Yang BH. Buchwald SL. J. Organomet. Chem. 1999; 576: 125
    • 7b Hartwig JF. In Modern Amination Methods . Ricci A. Wiley-VCH; Weinheim, Germany: 2000
    • 7c Muci AR. Buchwald SL. Top. Curr. Chem. 2002; 219: 131
    • 7d Zim D. Buchwald SL. Org. Lett. 2003; 5: 2413
    • 7e Urgaonkar S. Verkade JG. J. Org. Chem. 2004; 69: 9135
    • 7f Maiti D. Buchwald SL. J. Am. Chem. Soc. 2009; 131: 17423
    • 7g Shen Q. Hartwig JF. Org. Lett. 2008; 10: 4109
  • 8 Poola B. Choung W. Nantz MH. Tetrahedron 2008; 64: 10798
  • 9 Londregan AT. Jennings S. Wei L. Org. Lett. 2010; 12: 5254
    • 10a Dissanayake AA. Staples RJ. Odom AL. Adv. Synth. Catal. 2014; 356: 1811
    • 10b Ghorbani-Vaghei R. Toghraei-Semiromi Z. Karimi-Namib R. C. R. Chim. 2013; 16: 1111
    • 10c Gouda MA. Berghot MA. Abd El Ghani GE. Khalil AM. Synth. Commun. 2014; 44: 297
    • 11a Ibrahim MA. El-Sayed Ali T. El-Gohary NM. El-Kazak AM. Eur. J. Chem. 2013; 4: 311
    • 11b Abdel-Rahman AH. Hammouda MA. A. El-Desoky SI. Heteroat. Chem. 2005; 16: 20
    • 11c Plaskon AS. Grygorenko OO. Ryabukhlin SV. Tetrahedron 2012; 68: 2743
    • 11d Balalaie S. Derakhshan-Panaha F. Zolfigol MA. Rominger F. Synlett 2018; 29: 89
    • 12a Chai H. Li J. Yang L. Lu H. Zhang Q. Shi D. RSC Adv. 2014; 4: 44811
    • 12b Wu J. Du X. Ma J. Zhang Y. Shi Q. Luo L. Song B. Yangab S. Huab D. Green Chem. 2014; 16: 3210
    • 12c Liu X. Fu H. Jiang Y. Zhao Y. Angew. Chem. Int. Ed. 2009; 48: 348
  • 13 Kalaria PN. Satasia SP. Avalani JR. Raval DK. Eur. J. Med. Chem. 2014; 83: 655
    • 14a Oschatz S. Brunzel T. Wu XF. Langer P. Org. Biomol. Chem. 2015; 13: 1150
    • 14b Wu X.-F. Oschatz S. Block A. Spannenberg A. Langer P. Org. Biomol. Chem. 2014; 12: 1865
    • 15a Witt A. Bergman J. Curr. Org. Chem. 2003; 7: 659
    • 15b Mhaske SB. Argade NP. Tetrahedron 2006; 62: 9787
    • 15c Connolly DJ. Cusack D. O’Sullivan TP. Guiry PJ. Tetrahedron 2005; 61: 10153
    • 16a He L. Li H. Chen J. Wu XF. RSC Adv. 2014; 4: 12065
    • 16b Khan I. Ibrar A. Abbas N. Saeed A. Eur. J. Med. Chem. 2014; 76: 193
    • 17a Tajbakhsh M. Ramezanpour S. Balalaie S. Bijanzadeh HR. J. Heterocycl. Chem. 2015; 52: 1559
    • 17b Fathi Vavsari V. Mohammadi Ziarani G. Balalaie S. J. Iran. Chem. Soc. 2016; 13: 1037
    • 18a Balalaie S. Bararjanian S. Hekmat S. Salehi P. Synth. Commun. 2006; 24: 3703
    • 18b Balalaie S. Bararjanian M. Hekmat S. Salehi P. Synth. Commun. 2006; 36: 2549
    • 18c Abdolmohammadi S. Balalaie S. Tetrahedron Lett. 2007; 48: 3299
    • 18d Balalaie S. Abdolmohammadi S. Bijanzadeh HR. Amani AM. Mol. Diversity 2008; 12: 85
    • 18e Darvich F. Balalaie S. Chadegani F. Salehi P. Synth. Commun. 2007; 37: 1059
    • 18f Balalaie S. Bararjanian M. Hekmat S. Sheikh-Ahmadi M. Salehi P. Synth. Commun. 2007; 37: 1097
  • 19 General Procedure for the Synthesis of Functionalized 2-Aminopyridines 4a–c:To a solution of 3-formylchromone (1 mmol, 174 mg) and malononitrile (1 mmol, 66 mg) in water (10 mL) was added diammonium hydrogen phosphate (926 mg, 20% equiv) and the reaction mixture was stirred at room temperature for 30 min. After formation of the desired chromonyl malononitrile (monitoring by TLC, eluent: n-hexane/EtOAc, 3:1). The reaction mixture was stirred at 50 °C for 3 h. The precipitate was filtered and was washed with water and ethanol.2-Amino-5-(2-hydroxybenzoyl)nicotinonitrile (4a)Yield: 222 mg (93%); yellow powder; m.p. 198–200 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 6.90–6.97 (m, 2 H, H-Ar), 7.33 (d, J = 7.5 Hz, 1 H, H-Ar), 7.38–7.43 (m, 1 H, H-Ar), 7.81 (br. s, 2 H, N-H), 8.11 (d, J = 2.4 Hz, 1 H, H-Py), 8.47 (d, J = 2.4 Hz, 1 H, H-Py), 10.25 (br. s, 1 H, -OH). 13C NMR (75 MHz, DMSO-d 6): δ = 88.9, 116.1, 116.6, 119.3, 121.8, 124.7, 130.1, 133.0, 143.9, 155.6, 156.0, 161.3, 192.1. HRMS (EI): m/z calcd. for C13H9N3O2 [M]+ 239.0675; found: 239.0675.Colorless crystal (lamina); dimensions 0.150 × 0.120 × 0.010 mm3; crystal system triclinic; space group P1; Z=2; a=3.7932(9) Å, b=8.0333(19) Å, c=19.135(5) Å, α = 79.772(6)°, β = 89.384(6)°, γ = 79.103(6)°; V=563.3(2) Å3; ρ = 1.410 g/cm3; T = 200(2) K; θ max= 27.514°; radiation Mo Kα, λ = 0.71073 Å; 0.5° ω-scans with a CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 2.20 and a completeness of 85.6% to a resolution of 0.77 Å, 4556 reflections measured, 2073 unique (R(int)=0.0453), 1868 observed (I > 2σ(I)). Intensities were corrected for Lorentz and polarization effects, an empirical absorption correction was applied using SADABS based on the Laue symmetry of the reciprocal space, μ=0.10mm–1, T min=0.55, T max=0.96. The structure was refined against F2 with a full-matrix least-squares algorithm using the SHELXL-2014/7 (Sheldrick, 2014) software, 168 parameters were refined, hydrogen atoms were treated using appropriate riding models, except H12 of the hydroxy group, which was refined isotropically. Goodness of fit 1.12 for observed reflections, final residual values R1(F) = 0.049, wR(F2)=0.130 for observed reflections, residual electron density –0.27 to 0.24 eÅ–3.21 CCDC 1496174 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif21
  • 20 General Procedure for the Synthesis of Functionalized 2,3-Dihydropyrido[2,3-d]pyrimidin-4(1H)-one 6a–o:A mixture of functionalized 2-amino-pyridine 4ac (1 mmol), aromatic aldehyde 5al (1.2 mmol), and potassium phosphate (1.5 mmol, 340 mg) in water (10 mL) was heated for 7 h at 100 °C. The precipitate was washed with water and ethanol. 2-(4-Chlorophenyl)-6-(2-hydroxybenzoyl)-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one (6a):Yellow solid; m.p. 290–293 °C.IR: 3183, 3075, 1681, 1600 cm–1; 1H NMR (300 MHz, DMSO-d 6): δ = 6.00 (s, CH, 1 H), 6.95 (t, J = 7.2 Hz, 2 H, Ar-H), 7.30–7.45 (m, 6 H, Ar-H), 8.14 (s, 1 H, Py-H), 8.53 (s, 1 H, Py-H), 8.80 (s, 1 H, NH), 8.99 (br. s, 1 H, NH), 10.23 (br. s, 1 H, OH). 13C NMR (75 MHz, DMSO-d6 ): δ = 64.6, 107.6, 116.5, 119.1, 123.6, 125.4, 128.2, 128.6, 129.7, 132.6, 133.2, 137.1, 140.7, 155.4, 155.9, 158.9, 161.7, 193.4. HRMS (ESI): m/z [M–H] calcd. for C20H13 35ClN3O3: 378.066563; found: 378.06552.6-(2-Hydroxybenzoyl)-2-(4-nitrophenyl)-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one (6d):Yellow solid; m.p. 265–268 °C. IR: 3419, 3183, 1688 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 6.14 (s, CH, 1 H), 6.94–6.95 (t, J = 7.2 Hz, 1 H, Ar-H), 7.29–7.39 (m, 1 H, Ar-H), 7.69 (d, J = 7.0 Hz, 1 H, Ar-H), 8.08–8.27 (m, 4 H, Ar-H), 8.45–8.46 (d, J = 7.0 Hz, 1 H, Ar-H), 8.54 (s, 1 H, Py-H), 8.96 (s, 1 H, Py-H), 9.13 (s, 1 H, NH), 10.05 (s, 1 H, NH), 10.14 (s, 1 H, OH). 13C NMR (75 MHz, DMSO-d6 ): δ = 64.4, 116.5, 119.3, 123.2, 124.0, 125.4, 127.6, 130.2, 130.5, 136.1, 138.5, 147.5, 148.8, 150.8, 155.7, 161.7, 192.3. HRMS (ESI): m/z [M–H] calcd. for C20H13N4O5: 389.08906; found: 389.08908
    • 21a Program SADABS 2012/1 for absorption correction; Sheldrick, G. M.; Bruker Analytical X-ray-Division, Madison, Wisconsin, 2012.
    • 21b Program SHELXL-2014/7; Sheldrick, G. M, 2014; for structure refinement; Acta. Cryst. 2015, C71, 3-8.