Synthesis 2018; 50(14): 2784-2798
DOI: 10.1055/s-0036-1591576
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Substituted Indole-3-carboxylates by Iron(II)-Catalyzed Domino Isomerization of 3-Alkyl/aryl-4-aryl-5-methoxyisoxazoles

Vladimir A. Bodunov
Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation   Email: a.khlebnikov@spbu.ru
,
Ekaterina E. Galenko
Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation   Email: a.khlebnikov@spbu.ru
,
Alexey V. Galenko
Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation   Email: a.khlebnikov@spbu.ru
,
Mikhail S. Novikov
Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation   Email: a.khlebnikov@spbu.ru
,
Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation   Email: a.khlebnikov@spbu.ru
› Author Affiliations
We gratefully acknowledge the financial support of the Russian Science Foundation (Grant no. 16-13-10036).
Further Information

Publication History

Received: 21 February 2018

Accepted after revision: 28 March 2018

Publication Date:
29 May 2018 (online)


Abstract

The iron(II)-catalyzed domino isomerization of 3-alkyl/aryl-4-arylisoxazoles provides a selective access to a wide range of structurally diverse highly substituted indole-3-carboxylates. The operational simplicity, high atom efficiency, and the use of stable starting materials and an inexpensive and low-toxicity catalyst are some of the attractive features of this tandem double ring-opening–ring-closure strategy.

Supporting Information

 
  • References

  • 1 Gribble GW. Indole Ring Synthesis: From Natural Products to Drug Discovery. John Wiley & Sons; Chichester: 2016

    • For reviews, see:
    • 2a Baumann M. Baxendale IR. Ley SV. Nikbin N. Beilstein J. Org. Chem. 2011; 7: 442
    • 2b Kaushik NK. Kaushik N. Attri P. Kumar N. Kim CH. Verma AK. Choi EH. Molecules 2013; 18: 6620
    • 2c Zhang M.-Z. Chen Q. Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 2d Gale PA. Chem. Commun. 2008; 4525

      For reviews, see:
    • 3a Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 3b Vicente R. Org. Biomol. Chem. 2011; 9: 6469
    • 3c Taber DF. Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 3d Bartoli G. Dalpozzo R. Nardi M. Chem. Soc. Rev. 2014; 43: 4728
    • 3e Pozharskii AF. Kachalkina SG. Gulevskaya AV. Filatova EA. Russ. Chem. Rev. 2017; 86: 589
    • 3f Heravi MM. Rohani S. Zadsirjan V. Zahedi N. RSC Adv. 2017; 7: 52852
  • 4 Ahluwalia VK. Kidwai M. New Trends in Green Chemistry 2004
  • 5 Kern N. Hoffmann M. Blanc A. Weibel J.-M. Pale P. Org. Lett. 2013; 15: 836
    • 6a Khlebnikov AF. Novikov MS. Top. Heterocycl. Chem. 2016; 41: 143
    • 6b Huang C.-Y. Doyle AG. Chem. Rev. 2014; 114: 8153
    • 6c Khlebnikov AF. Novikov MS. Tetrahedron 2013; 69: 3363
    • 6d Padwa A. Adv. Heterocycl. Chem. 2010; 99: 1
    • 7a Isomura K. Kobayashi S. Taniguchi H. Tetrahedron Lett. 1968; 9: 3499
    • 7b Isomura K. Uto K. Taniguchi H. J. Chem. Soc., Chem. Commun. 1977; 664
    • 7c Padwa A. Carlsen PH. J. J. Org. Chem. 1978; 43: 2029
    • 7d Isomura K. Ayabe G.-I. Hatano S. Taniguchi H. J. Chem. Soc., Chem. Commun. 1980; 1252
    • 7e Taber DF. Tian W. J. Am. Chem. Soc. 2006; 128: 1058
    • 7f Chiba S. Hattoti G. Narasaka K. Chem. Lett. 2007; 36: 52
    • 7g Li X. Du Y. Liang Z. Li X. Pan Y. Zhao K. Org. Lett. 2009; 11: 2643
    • 7h Jana S. Clements MD. Sharp BK. Zheng N. Org. Lett. 2010; 12: 3736
    • 8a Galenko EE. Khlebnikov AF. Novikov MS. Chem. Heterocycl. Compd. 2016; 52: 637
    • 8b Auricchio S. Bini A. Pastormerlo E. Truscello AM. Tetrahedron 1997; 53: 10911
    • 8c Mikhailov KI. Galenko EE. Galenko AV. Novikov MS. Ivanov AYu. Starova GL. Khlebnikov AF. J. Org. Chem. 2018; 83: 3177
    • 8d Galenko EE. Bodunov VA. Galenko AV. Novikov MS. Khlebnikov AF. J. Org. Chem. 2017; 82: 8568
    • 8e Galenko AV. Galenko EE. Shakirova FM. Novikov MS. Khlebnikov AF. J. Org. Chem. 2017; 82: 5367
    • 8f Galenko EE. Galenko AV. Khlebnikov AF. Novikov MS. Shakirova JR. J. Org. Chem. 2016; 81: 8495
    • 8g Galenko EE. Tomashenko OA. Khlebnikov AF. Novikov MS. Panikorovskii TL. Beilstein J. Org. Chem. 2015; 11: 1732
    • 8h Galenko EE. Tomashenko OA. Khlebnikov AF. Novikov MS. Org. Biomol. Chem. 2015; 13: 9825
    • 8i Galenko EE. Galenko AV. Khlebnikov AF. Novikov MS. RSC Adv. 2015; 5: 18172
  • 9 Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
  • 10 Wu C. Li J. Yan B. Dalton Trans. 2014; 43: 5364
  • 11 Dannhardt G. Laufer S. Obergrusberger I. Synthesis 1989; 275
  • 12 Scarpati R. Gazz. Chim. Ital. 1959; 89: 1511
  • 13 Davis FA. J. Org. Chem. 1999; 64: 8929
  • 14 Zhou L. Doyle M. J. Org. Chem. 2009; 74: 9222
  • 15 Tanimori S. Ura H. Kirihata M. Eur. J. Org. Chem. 2007; 3977
  • 16 Kaneko C. Fujii H. Kawai S. Hashiba K. Karasawa Y. Wakai M. Hayashi R. Somei M. Chem. Pharm. Bull. 1982; 30: 74
  • 17 Zhang X. Zhang-Negrerie D. Deng J. Du Y. Zhao K. J. Org. Chem. 2013; 78: 12750