Synthesis 2018; 50(07): 1439-1456
DOI: 10.1055/s-0036-1591537
feature
© Georg Thieme Verlag Stuttgart · New York

Use of 3-Hydroxy-4-(trifluoromethyl)azetidin-2-ones as Building Blocks for the Preparation of Trifluoromethyl-Containing Aminopropanes, 1,3-Oxazinan-2-ones, Aziridines, and 1,4-Dioxan-2-ones

Hang Dao Thi
a  SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   eMail: matthias.dhooghe@UGent.be
b  Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, CauGiay, Hanoi, Vietnam   eMail: ngvtuyen@hotmail.com
,
Giang Le Nhat Thuy
b  Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, CauGiay, Hanoi, Vietnam   eMail: ngvtuyen@hotmail.com
,
Saron Catak
c  Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium   eMail: veronique.vanspeybroeck@UGent.be
,
Veronique Van Speybroeck
c  Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium   eMail: veronique.vanspeybroeck@UGent.be
,
Tuyen Van Nguyen*
b  Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, CauGiay, Hanoi, Vietnam   eMail: ngvtuyen@hotmail.com
,
Matthias D’hooghe*
a  SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   eMail: matthias.dhooghe@UGent.be
› Institutsangaben
The authors are indebted to the Research Foundation – Flanders (FWO, Project G0F4816N) and to the National Foundation for Science and Technology Development, Vietnam (NAFOSTED, Project FWO-104-2015.01) for financial support in the framework of a FWO-NAFOSTED bilateral research cooperation. The authors are also indebted to Ghent University – Belgium (Special Research Fund, BOF) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 30. November 2017

Accepted after revision: 08. Januar 2018

Publikationsdatum:
07. Februar 2018 (online)


Abstract

3-Hydroxy-4-(trifluoromethyl)azetidin-2-ones were synthesized from the corresponding 3-benzyloxy-β-lactams and successfully transformed into new 3-chloro-4-(trifluoromethyl)azetidin-2-one building blocks. The latter chlorides were shown to be eligible precursors for the construction of CF3-containing aminopropanes, 1,3-oxazinanes, 1,3-oxazinan-2-ones, and aziridines. In addition, 3-hydroxy-4-(trifluoromethyl)azetidin-2-ones proved to be interesting substrates for the synthesis of novel 3-[2,2,2-trifluoro-1-(arylamino)ethyl]-1,4-dioxan-2-ones via intramolecular cyclization of 3-(2-hydroxyethoxy)-β-lactam intermediates.

Supporting Information

 
  • References

    • 1a O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
    • 1b Fujiwara T. O’Hagan D. J. Fluorine Chem. 2014; 167: 16
    • 1c Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 3a Kenis S. D’hooghe M. Verniest G. Nguyen Duc V. Dang Thi TA. Van Nguyen T. De Kimpe N. Org. Biomol. Chem. 2011; 9: 7217
    • 3b Kenis S. D’hooghe M. Verniest G. Dang Thi TA. Pham The C. Van Nguyen T. De Kimpe N. J. Org. Chem. 2012; 77: 5982
    • 3c Kenis S. D’hooghe M. Verniest G. Reybroeck M. Dang Thi TA. Pham The C. Pham Thi T. Törnroos KW. Van Nguyen T. De Kimpe N. Chem. Eur. J. 2013; 19: 5966
    • 3d Dolfen J. Kenis S. Van Hecke K. De Kimpe N. D’hooghe M. Chem. Eur. J. 2014; 20: 10650
  • 4 Kuznetsova LV. Pepe A. Ungureanu IM. Pera P. Bernacki RJ. Ojima I. J. Fluorine Chem. 2008; 129: 817
  • 5 Bégué J.-P. Bonnet-Delpon D. In Bioorganic and Medicinal Chemistry of Fluorine . Wiley; New York: 2007: 23
  • 6 Kowalski MK. Mlostoń G. Obijalska E. Linden A. Heimgartner H. Tetrahedron 2016; 72: 5305
    • 7a Ojima I. Slater JC. Pera P. Veith JM. Abouabdellah A. Bégué J.-P. Bernacki RJ. Bioorg. Med. Chem. Lett. 1997; 7: 133
    • 7b Garbi A. Allain L. Chorki F. Ourévitch M. Crousse B. Bonnet-Delpon D. Nakai T. Bégué J.-P. Org. Lett. 2001; 3: 2529
    • 7c Kuznetsova L. Ungureanu IM. Pepe A. Zanardi I. Wu X. Ojima I. J. Fluorine Chem. 2004; 125: 487
  • 8 Dao Thi H. Decuyper L. Mollet K. Kenis S. De Kimpe N. Van Nguyen T. D’hooghe M. Synlett 2016; 27: 1100
  • 9 Dao Thi, H.; Goossens, H.; Hertsen, H.; Otte, V.; Van Nguyen, T.; Van Speybroeck, V.; D’hooghe, M. Chem. Asian J. 2018, 13, doi: 10.1002/asia.201701636.
  • 10 Dao Thi H. Danneels B. Desmet T. Van Hecke K. Van Nguyen T. D’hooghe M. Asian J. Org. Chem. 2016; 5: 1480
  • 11 Davoli P. Forni A. Franciosi C. Moretti I. Prati F. Tetrahedron: Asymmetry 1999; 10: 2361
  • 12 Ma X. Liu S. Liu Y. Gu G. Xia C. Sci. Rep. 2016; 6: 25068
  • 13 D’hooghe M. Van Brabandt W. De Kimpe N. J. Org. Chem. 2004; 69: 2703
    • 14a Van Driessche B. Van Brabandt W. D’hooghe M. Dejaegher Y. De Kimpe N. Tetrahedron 2006; 62: 6882
    • 14b Mollet K. Decuyper L. Vander Meeren S. Piens N. De Winter K. Desmet T. D’hooghe M. Org. Biomol. Chem. 2015; 13: 2716
  • 15 Decamps S. Sevaille L. Ongeri S. Crousse B. Org. Biomol. Chem. 2014; 12: 6345
  • 16 Ma S.-h. Yoon DH. Ha H.-J. Lee WK. Tetrahedron Lett. 2007; 48: 269
    • 17a D’hooghe M. Vandekerckhove S. Mollet K. Vervisch K. Dekeukeleire S. Lehoucq L. Lategan C. Smith PJ. Chibale K. De Kimpe N. Beilstein J. Org. Chem. 2011; 7: 1745
    • 17b Mollet K. D’hooghe M. De Kimpe N. J. Org. Chem. 2011; 76: 264
    • 18a Burke WJ. Murdock KC. Ec G. J. Am. Chem. Soc. 1954; 76: 1677
    • 18b Zanatta N. Squizani AM. C. Fantinel L. Nachtigall FM. Borchhardt DM. Bonacorso HG. Martins MA. P. J. Braz. Chem. Soc. 2005; 16: 1255
    • 18c Mathis CL. Gist BM. Frederickson CK. Midkiff KM. Marvin CC. Tetrahedron Lett. 2013; 54: 2101
    • 19a Deb ML. Pegu CD. Borpatra PJ. Saikia PJ. Baruah PK. Green Chem. 2017; 19: 4036
    • 19b Zhang G.-Y. Xiang Y. Guan Z. He Y.-H. Catal. Sci. Technol. 2017; 7: 1937
  • 20 Aricò F. Bravo S. Crisma M. Tundo P. Pure Appl. Chem. 2016; 88: 227
  • 21 Toniolo S. Aricò F. Tundo P. ACS Sustainable Chem. Eng. 2014; 2: 1056
  • 22 Malkov AV. Stončius S. Kočovský P. Angew. Chem. Int. Ed. 2007; 46: 3722
  • 23 Akiyama T. Ogi S. Fuchibe K. Tetrahedron Lett. 2003; 44: 4011
  • 24 Moens M. De Kimpe N. D’hooghe M. J. Org. Chem. 2014; 79: 5558
    • 25a Alcaide B. Almendros P. Salgado NR. J. Org. Chem. 2000; 65: 3310
    • 25b Alcaide B. Almendros P. Redondo MC. Eur. J. Org. Chem. 2007; 3707
  • 26 Banfi L. Guanti G. Rasparini M. Eur. J. Org. Chem. 2003; 1319
    • 27a Fleck TJ. McWhorter WW. DeKam RN. Pearlman BA. J. Org. Chem. 2003; 68: 9612
    • 27b Banfi L. Basso A. Guanti G. Paravidino M. Riva A. Scapollab C. ARKIVOC 2006; (vi): 15
    • 28a Dubey A. Kandula SR. V. Kumar P. Synth. Commun. 2008; 38: 746
    • 28b Shaikh AL. Banik BK. Helv. Chim. Acta 2012; 95: 839
  • 29 Zarei M. Tetrahedron 2013; 69: 6620
    • 30a Schwertfeger W. Siegemund G. Angew. Chem., Int. Ed. Engl. 1980; 19: 126
    • 30b Fujioka H. Matsunaga N. Kitagawa H. Nagatomi Y. Kondo M. Kita Y. Tetrahedron: Asymmetry 1995; 6: 2117
    • 30c Tian H.-y. Sun B.-g. Tang L.-w. Ye H.-l. Flavour Fragr. J. 2011; 26: 65
    • 31a Ley SV. Diez E. Dixon DJ. Guy RT. Michel P. Nattrass GL. Sheppard TD. Org. Biomol. Chem. 2004; 2: 3608
    • 31b Gassa F. Contini A. Fontana G. Pellegrino S. Gelmi ML. J. Org. Chem. 2010; 75: 7099
    • 32a Broggini G. Zecchi G. Org. Prep. Proced. Int. 1991; 23: 762
    • 32b Li M.-X. Zhuo R.-X. Qu F.-Q. React. Funct. Polym. 2003; 55: 185
    • 32c Yu X.-h. Feng J. Zhuo R.-x. Macromolecules 2005; 38: 6244
    • 33a Kim S.-I. Kim C.-U. Park S.-J. J. Chem. Eng. Data 2005; 50: 1871
    • 33b He F. Jia H.-L. Liu G. Wang Y.-P. Feng J. Zhuo R.-X. Biomacromolecules 2006; 7: 2269
    • 33c Penso M. Foschi F. Pellegrino S. Testa A. Gelmi ML. J. Org. Chem. 2012; 77: 3454