Synthesis 2018; 50(03): 593-598
DOI: 10.1055/s-0036-1591515
paper
© Georg Thieme Verlag Stuttgart · New York

Glycosylation of Stannyl Ceramides Promoted by Modified Montmorillonite­ in Supercritical Carbon Dioxide

a   Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de México, C.P. 09340, México   Email: joseantonio.moralesserna@xanum.uam.mx
,
b   School of Chemistry, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
,
c   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, México
,
c   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, México
,
c   Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, México
,
Gustavo García de la Mora
d   Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, México
› Author Affiliations
The authors are very grateful for the economic support acquired from CONACyT (Institutional Links FONCICYT-275694), FERMIC S. A. de C.V. and PRODEP-SEP (DSA/103.5/16/10288). J.A.M.S. and B.N.N. acknowledge support from the Royal Society, British Council, Newton Fund and Newton Fellowship Alumni Program.
Further Information

Publication History

Received: 12 August 2017

Accepted after revision: 06 October 2017

Publication Date:
07 November 2017 (online)


Abstract

The direct glycosylation of ceramides in supercritical carbon dioxide (scCO2) successfully proceeded to produce β-glycolipids in high yield and with full stereoselectivity. The reaction is promoted by montmorillonite modified with a superacid (CF3SO3H). The value of this protocol was demonstrated in the efficient synthesis of isoglobotrihexosylceramide (iGB3).

Supporting Information

 
  • References

    • 1a Maqbool W. Hobson P. Dunn K. Doherty W. Ind. Eng. Chem. Res. 2017; 56: 3129
    • 1b Uddin S. Sarker ZI. Ferdosh S. Akanda JH. Easmin S. Bt Shamsudin SH. Yunus KB. J. Sci. Food Agric. 2015; 95: 1385
    • 1c Durante M. Lenucci MS. Mita G. Int. J. Mol. Sci. 2014; 15: 6725
    • 1d Machado BA. S. Pereira CG. Nunes SB. Padilha FF. Umsza-Guez MA. Sep. Sci. Technol. 2013; 48: 2741
    • 1e Capuzzo A. Maffei ME. Occhipinti A. Molecules 2013; 18: 7194
    • 1f Sticher O. Nat. Prod. Rep. 2008; 25: 517
    • 2a Rakhubaa D. Novika G. Dey ES. J. Supercrit. Fluids 2009; 49: 45
    • 2b Novik G. Gamian A. Francisco JC. Dey ES. J. Biotechnol. 2006; 121: 555
  • 3 Began G. Manohar B. Sankar KU. Rao AG. A. Eur. Food Res. Technol. 2000; 210: 209
  • 4 Boselli E. Caboni MF. J. Supercrit. Fluids 2000; 19: 45
  • 5 Mendes RL. Reis AD. Palavra AF. Food Chem. 2006; 99: 57
    • 6a Girard E. Tassaing T. Marty J.-D. Destarac M. Chem. Rev. 2016; 116: 4125
    • 6b Peach J. Eastoe J. Beilstein J. Org. Chem. 2014; 10: 1878
    • 6c Raveendran P. Ikushima Y. Wallen SL. Acc. Chem. Res. 2005; 38: 478
    • 7a Farran A. Cai C. Sandoval M. Xu Y. Liu J. Hernaiz MJ. Linhardt RJ. Chem. Rev. 2015; 115: 6811
    • 7b Honghong C. Congcong Y. Xing L. Wenlong W. Xianyong P. Yan Q. J. Mol. Model. 2014; 20: 2259
    • 7c Raveendran P. Wallen SL. J. Am. Chem. Soc. 2002; 124: 7274
    • 7d Potluri VK. Xu J. Enick R. Beckman E. Hamilton AD. Org. Lett. 2002; 4: 2333
    • 8a Morales-Serna JA. Boutureira O. Díaz Y. Matheu MI. Castillón S. Org. Biomol. Chem. 2008; 6: 443
    • 8b Morales-Serna JA. Díaz Y. Matheu MI. Castillón S. Org. Biomol. Chem. 2008; 6: 3831
  • 9 For a recent example about glycosylation of ceramide, see: D’Angelo KA. Taylor MS. Chem. Commun. 2017; 53: 5978
    • 10a For reviews about use of scCO2 as solvent in organic reactions, see: Olmos A. Asensio G. Pérez PJ. ACS Catal. 2016; 6: 4265
    • 10b Zhang B. Zhang J. Han B. Chem. Asian J. 2016; 11: 2610
    • 10c Han X. Poliakoff M. Chem. Soc. Rev. 2012; 41: 1428
    • 10d Álvarez de Cienfuegos L. Robles R. Miguel D. Justicia J. Cuerva JM. ChemSusChem 2011; 4: 1035
  • 11 For a recent review on O-glycosylation, see: Das R. Mukhopadhyay B. ChemistryOpen 2016; 5: 401
  • 12 Cardona A. Boutureira O. Castillón S. Díaz Y. Matheu MI. Green Chem. 2017; 19: 2687
  • 13 Li XB. Ogawa M. Monden T. Maeda T. Yamashita E. Naka M. Matsuda M. Hinou H. Nishimura SI. Angew. Chem. Int. Ed. 2006; 45: 5652
  • 14 D’Angelo G. Capasso S. Sticco L. Russo D. FEBS J. 2013; 280: 6338
  • 15 Taïeb N. Yahi N. Fantini J. Adv. Drug Delivery Rev. 2004; 56: 779
  • 16 McReynolds KD. Gervay-Hague J. Chem. Rev. 2007; 107: 1533
  • 17 Morales-Serna JA. Boutureira O. Díaz Y. Matheu MI. Castillón S. Carbohydr Res. 2007; 342: 1595
  • 18 Kaneda K. Synlett 2007; 999
  • 19 Moraes DS. Angélica RS. Costa CE. F. Filho RG. N. Zamian JR. Appl. Clay Sci. 2011; 51: 209
  • 20 Morales-Serna JA. Frontana-Uribe BA. Olguín R. Gómez-Vidales V. Lomas-Romero L. García-Ríos E. Gaviño R. Cárdenas J. RSC Adv. 2016; 6: 42613
  • 21 Gervay-Hague J. Acc. Chem. Res. 2016; 49: 35
    • 22a Nielsen MM. Stougaard BA. Bols M. Glibstrup E. Pedersen CM. Eur. J. Org. Chem. 2017; 1281
    • 22b Peng P. Schmidt RR. J. Am. Chem. Soc. 2015; 137: 12653
  • 23 Ranade SC. Demchenko AV. J. Carbohydr. Chem. 2013; 32: 1
  • 24 Joosten A. Boultadakis-Arapinis M. Gandon V. Micouin L. Lecourt T. J. Org. Chem. 2017; 82: 3291
    • 25a Cheng JM. H. Dangerfield EM. Timmer MS. M. Stocker BL. Org. Biomol. Chem. 2014; 12: 2729
    • 25b Morales-Serna JA. Díaz Y. Matheu MI. Castillón S. Eur. J. Org. Chem. 2009; 3849
    • 25c Zhou D. Mattner J. Cantu 3rd C. Schrantz N. Yin N. Gao Y. Sagiv Y. Hudspeth K. Wu YP. Yamashita T. Teneberg S. Wang D. Proia RL. Levery SB. Savage PB. Teyton L. Bendelac A. Science 2004; 306: 1786
    • 25d Yao Q. Song J. Xia Ch. Zhang W. Wang PG. Org. Lett. 2006; 8: 911
  • 26 Hooper JF. Seo S. Truscott FR. Neuhaus JD. Willis MC. J. Am. Chem. Soc. 2016; 138: 1630
  • 27 Duclos RI. Jr. Chem. Phys. Lipids 2001; 111: 111