Synlett, Table of Contents Synlett 2018; 29(03): 310-313DOI: 10.1055/s-0036-1591506 letter © Georg Thieme Verlag Stuttgart · New YorkIodonium-Induced Cyclization of N-Allenylindoles and N-Allenylpyrroles: An Access to Iododihydropyrido[1,2-a]indoles and Dihydroindolizines Charlotte Grandclaudon a PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 11 Rue P. et M. Curie, 75005 Paris, France , Veronique Michelet a PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 11 Rue P. et M. Curie, 75005 Paris, France , Patrick Y. Toullec * a PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 11 Rue P. et M. Curie, 75005 Paris, France b Institute of Molecular Sciences, University of Bordeaux, 351, Cours de la Libération, 33405 Talence, France Email: patrick.toullec@u-bordeaux.fr› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract The formation of iodinated dihydropyrido[1,2-a]indoles and dihydroindolizines was achieved by an iodocarbocyclization reaction of N-allenylindoles and N-allenylpyrroles. This transformation proceeded under very mild conditions using N-iodosuccinimide as the electrophilic iodine source to deliver the products via a 6-endo cyclization process. Careful choice of the solvent and concentration were mandatory to obtain the cyclization in good yields. Keywords Keywordselectrophilic iodocyclization - allenes - NIS - indoles - pyrroles Full Text References References and Notes 1a Aygun A. Pindur U. Curr. Med. Chem. 2003; 10: 1113 1b Leena Gupta BS. P. Archna Talwar BS. P. Prem MS. Chauhan BS. P. Curr. Med. Chem. 2007; 14: 1789 1c Schmuck C. Rupprecht D. Synthesis 2017; 49: 3095 1d Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489 1e Ishikura M. Yamada K. Abe T. Nat. Prod. Rep. 2010; 27: 1630 1f Mal D. Shome B. Dinda BK. In Heterocycles in Natural Product Synthesis . Majumdar KC. Chattopadhyay SK. Wiley-VCH; Weinheim: 2011. Chap. 2 Nichols DE. Nichols CD. Chem. Rev. 2008; 108: 1614 3a Tfelt-Hansen P. De Vries P. Saxena PR. Drugs 2000; 60: 1259 3b Zhang M.-Z. Chen Q. Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421 4 Mori M. Heterocycles 2010; 81: 259 5a Kam T.-S. Sim K.-M. Lim T.-M. Tetrahedron Lett. 2000; 41: 2733 5b Torres-Ochoa RO. Reyes-Gutiérrez PE. Martínez R. Eur. J. Org. Chem. 2014; 48 6 Liang X. Jiang S.-Z. Wei K. Yang Y.-R. J. Am. Chem. Soc. 2016; 138: 2560 7 Linde HA. Helv. Chim. Acta 1965; 14: 5179 For selected examples, see: 8a Pace WH. Mo D.-L. Reidl TW. Wink DJ. Anderson LL. Angew. Chem. Int. Ed. 2016; 55: 9183 8b Srivastava A. Biswas S. Singh S. Mobin SM. Samanta S. RSC Adv. 2015; 5: 26891 8c Patil DV. Cavitt MA. Grzybowski P. France S. Chem. Commun. 2011; 47: 10278 8d Zhu H. Stöckigt J. Yu Y. Zou H. Org. Lett. 2011; 13: 2792 8e Mizutani M. Inagaki F. Nakanishi T. Yanagihara C. Tamai I. Mukai C. Org. Lett. 2011; 13: 1796 8f Facoetti D. Abbiati G. Rossi E. Eur. J. Org. Chem. 2009; 2872 8g Biechy A. Zard SZ. Org. Lett. 2009; 11: 2800 8h Li Z. Zhu A. Yang J. J. Heterocycl. Chem. 2012; 49: 1458 8i Du D. Li L. Wang Z. J. Org. Chem. 2009; 74: 4379 ; and references cited herein 9a Liu Z. Wasmuth AS. Nelson SG. J. Am. Chem. Soc. 2006; 128: 10352 9b Tarselli MA. Gagné MR. J. Org. Chem. 2008; 73: 2439 9c Barluenga J. Piedrafita M. Ballesteros A. Suárez-Sobrino ÁL. González JM. Chem. Eur. J. 2010; 16: 11827 10a Shapiro ND. Toste FD. Synlett 2010; 675 10b Gorin DJ. Sherry BD. Toste FD. Chem. Rev. 2008; 108: 3351 10c Li Z. Brouwer C. He C. Chem. Rev. 2008; 108: 3239 10d Arcadi A. Chem. Rev. 2008; 108: 3266 10e Hashmi AS. K. Chem. Rev. 2007; 107: 3180 10f Hashmi AS. K. Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896 10g Díez-González S. Marion N. Nolan SP. Chem. Rev. 2009; 109: 3612 10h Modern Gold Catalyzed Synthesis . Hashmi AS. K. Toste FD. Wiley-VCH; Weinheim: 2012 10i Gold Catalysis: An Homogeneous Approach . Toste FD. Michelet V. Imperial College Press; London: 2014 11a Hummel S. Kirsch SF. Beilstein J. Org. Chem. 2011; 7: 847 11b Yamamoto Y. Gridnev ID. Patil NT. Jin T. Chem. Commun. 2009; 34: 5075 12a Abdul-Malik NF. Awad SB. Sakla AB. Helv. Chim. Acta 1979; 62: 1872 12b Barluenga J. Campos-Gómez E. Minatti A. Rodríguez D. González JM. Chem. Eur. J. 2009; 15: 8946 12c Wang M. Li J. Fu C. Ma S. Org. Lett. 2014; 16: 4976 12d Li G. Zhang-Negrerie D. Du Y. Synthesis 2017; 49: 2917 13a Zhang L. Zhu Y. Yin G. Lu P. Wang Y. J. Org. Chem. 2012; 77: 9510 13b Song H. Liu Y. Wang Q. Org. Lett. 2013; 15: 3274 13c Wang J. Zhu H.-T. Qiu Y.-F. Niu Y. Chen S. Li Y.-X. Liu X.-Y. Liang Y.-M. Org. Lett. 2015; 17: 3186 13d Verma AK. Shukla SP. Singh J. Rustagi V. J. Org. Chem. 2011; 76: 5670 13e Martins GM. Zeni G. Back DF. Kaufman TS. Silveira CC. Adv. Synth. Catal. 2015; 357: 3255 14 Wang J. Zhu H. Chen S. Xia Y. Jin D. Qiu Y. Li Y. Liang Y. J. Org. Chem. 2016; 81: 10975 15 Grandclaudon C. Michelet V. Toullec PY. Org. Lett. 2016; 18: 676 16 Diminished yields were obtained when longer reaction times were employed due to decomposition. 17 General Procedure for the Iodocyclization of Allenyl Substrates To a dry flask equipped with a magnetic stir bar were added the allenyl substrate (0.2 mmol, 1 equiv) and CH3CN (5 mL); then NIS (0.24 mmol, 1.2 equiv) dissolved in CH3CN (5 mL) was added. After stirring at room temperature for 10 min, TLC analysis showed complete conversion of the substrate, and the reaction mixture was quenched with sat. aq Na2S2O3 (5 mL). The aqueous phase was extracted with EtOAc (2 × 10 mL), the combined organic layers were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure to afford the crude product, which was then purified by flash chromatography to give the desired cyclized compound. Compound 2b was obtained as a colorless oil in 75% yield (53.4 mg). Rf = 0.38 (petroleum ether/dichloromethane = 95:5). 1H NMR (300 MHz, CDCl3): δ = 7.57 (dd, J = 6.7, 1.5 Hz, 1 H), 7.26–7.09 (m, 3 H), 4.57 (s, 2 H), 2.44 (s, 3 H), 2.14 (s, 3 H), 1.62 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 134.7 (Cq), 133.6 (Cq), 130.2 (Cq), 129.5 (Cq), 120.9 (CH), 119.5 (CH), 117.9 (CH), 115.9 (Cq), 108.6 (CH), 104.5 (Cq), 46.8 (CH2), 40.7 (Cq), 30.5 (2CH3), 28.5 (CH3), 10.9 (CH3). APCI-MS: m/z = 352 [M + H]+. Supplementary Material Supplementary Material Supporting Information