Synlett 2018; 29(03): 369-374
DOI: 10.1055/s-0036-1591502
letter
© Georg Thieme Verlag Stuttgart · New York

Iodide-Catalyzed Carbonylation–Benzylation of Benzyl Chlorides with Potassium Aryltrifluoroborates under Ambient Pressure of Carbon Monoxide

Wei Han  *
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China
b   Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
,
Junjie Chen
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China
,
Fengli Jin
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China
,
Xiaorong Yuan
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China
› Author Affiliations
This work was sponsored by the Natural Science Foundation of Jiangsu Province (BK20161553), the Natural Science Foundation of Jiangsu Provincial Colleges and Universities (16KJB150019), the Natural Science Foundation of China (21776139, 21302099), the SRF for ROCS, SEM, the Qing Lan project of Nanjing Normal University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Further Information

Publication History

Received: 27 August 2017

Accepted after revision: 26 September 2017

Publication Date:
26 October 2017 (online)


Abstract

Tetra-N-butylammonium iodide (TBAI) catalyzed carbonylation–benzylation of unactivated benzyl chlorides with potassium aryltrifluoroborates using CO gas has been developed. This reaction is transition-metal free, is carried out under ambient pressure, and provides a wide range of 1,2,3-triarylpropan-1-one derivatives in high yields. The novel method represents a significant improvement over the traditional palladium-catalyzed carbonylation.

Supporting Information

 
  • References and Notes

  • 1 Ishiyama T. Kizaki H. Miyaura N. Suzuki A. Tetrahedron Lett. 1993; 34: 7595
    • 2a Maeyama K. Yamashita K. Saito H. Aikawa S. Yoshida Y. Polym. J. 2012; 44: 315
    • 2b Wen A. Wang Z. Hang T. Jia Y. Zhang T. Wu Y. Gao X. Yang Z. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2007; 856: 348
    • 2c Zhao WL. Carreira EM. Org. Lett. 2006; 8: 99
    • 2d Ong AL. Kamaruddin AH. Bhatia S. Process Biochem. 2005; 40: 3526
    • 2e Furusawa M. Ido Y. Tanaka T. Ito T. Nakaya K. Ibrahim I. Ohyama M. Iinuma M. Shirataka Y. Takahashi Y. Helv. Chim. Acta 2005; 88: 1048
    • 2f Bosca F. Miranda MA. J. Photochem. Photobiol., B 1998; 43: 1
    • 2g Dorman G. Prestwich GD. Biochemistry 1994; 33: 5661

      For some recent reviews on Pd-catalyzed carbonylations of arylhalides, see:
    • 3a Wu X.-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1
    • 3b Wu X.-F. Neumann H. Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 3c Grigg R. Mutton SP. Tetrahedron 2010; 66: 5515
    • 3d Brennführer A. Neumann H. Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 3e Gadge ST. Bhanage BM. RSC Adv. 2014; 4: 10367
    • 3f Fang WW. Zhu HB. Deng QY. Liu SL. Liu XY. Shen YJ. Tu T. Synthesis 2014; 46: 1689
    • 4a Wu X.-F. Beller M. Transition Metal Catalyzed Carbonylation Reactions-Carbonylative Activation of C–X Bonds. Springer-Verlag; Berlin, Heidelberg: 2013
    • 4b Kollár L. Modern Carbonylation Methods . Wiley-VCH, Verlag GmbH & Co. KgaA; Weinheim: 2008
    • 5a Cardenas DJ. Angew. Chem. Int. Ed. 2003; 42: 384
    • 5b Nishihara Y. In Applied Cross-Coupling Reactions . Springer; Berlin, Heidelberg: 2013: 1-247

    • For recent reviews on carbonylation of C(sp3) halides, see:
    • 5c Liégault B. Renaud J.-L. Bruneau C. Chem. Soc. Rev. 2008; 37: 290
    • 5d Wu LP. Fang XJ. Liu Q. Jackstell R. Beller M. Wu X.-F. ACS Catal. 2014; 4: 2977
  • 6 Ishiyama T. Kizaki H. Hayashi T. Suzuki A. Miyaura N. J. Org. Chem. 1998; 63: 4726
  • 7 Wu X.-F. Neumann H. Beller M. Tetrahedron Lett. 2010; 51: 6146
  • 8 Noverges B. Medio-Simόn M. Asensio G. Adv. Synth. Catal. 2014; 356: 3649
    • 9a Zanti G. Peeters D. Eur. J. Inorg. Chem. 2009; 3904
    • 9b Welch CJ. Albaneze-Walker J. Leonard WR. Biba M. DaSilva J. Henderson D. Laing B. Mathre DJ. Spencer S. Bu X. Wang T. Org. Process Res. Dev. 2005; 9: 198
    • 9c Usluer Ö. Abbas M. Wantz G. Vignau L. Hirsch L. Grana E. Brochon C. Cloutet E. Hadziioannou G. ACS Macro Lett. 2014; 3: 1134

      Recent reviews on transition-metal-free processes, see:
    • 10a Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 10b Yanagisawa S. Itami K. ChemCatChem 2011; 3: 827
    • 10c Shirakawa E. Hayashi T. Chem. Lett. 2012; 41: 130
    • 10d Mehta VP. Punji B. RSC Adv. 2013; 3: 11957
    • 11a Majek M. Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 2270
    • 11b Guo W. Lu L.-Q. Wang Y. Wang Y.-N. Chen J.-R. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 2265
    • 11c Zhang H. Shi R. Ding A. Lu L. Chen B. Lei A. Angew. Chem. Int. Ed. 2012; 51: 12542
    • 11d Jin FL. Han W. Chem. Commun. 2015; 9133
    • 11e Jin FL. Zhong YZ. Zhang X. Zhang HC. Zhao Q. Han W. Green Chem. 2016; 18: 2598

      For reviews, see:
    • 12a Darses S. Genet J.-P. Chem. Rev. 2008; 108: 288
    • 12b Doucet H. Eur. J. Org. Chem. 2008; 2013
    • 12c Molander GA. Ellis NM. Acc. Chem. Res. 2007; 40: 275
    • 12d Stefani HA. Cella R. Vieira AS. Tetrahedron 2007; 63: 3623
    • 13a Wu X.-F. Neumann H. Beller M. Adv. Synth. Catal. 2011; 353: 788
    • 13b Zhao HY. Han W. Eur. J. Org. Chem. 2016; 4279

      For selected examples of radical carbonylative coupling of alkyl halidesand arylboronic acids (or arylboronic esters), see:
    • 14a Zhao H.-Y. Feng Z. Luo ZJ. Zhang XG. Angew. Chem. Int. Ed. 2016; 55: 10401
    • 14b Pye DR. Cheng L.-J. Mankad NP. Chem. Sci. 2017; 8: 4750
    • 14c Roslin S. Odell LR. Chem. Commun. 2017; 6895
    • 14d Sumino S. Ui T. Ryu I. Org. Lett. 2013; 15: 3142
    • 14e Sumino S. Ui T. Ryu I. Org. Chem. Front. 2015; 2: 1085
    • 15a Ryu I. Chem. Soc. Rev. 2001; 30: 16
    • 15b Sumino S. Fusano A. Fukuyama T. Ryu I. Acc. Chem. Res. 2014; 47: 1563
    • 15c Ryu I. Sonoda N. Angew. Chem. Int. Ed. Engl. 1996; 35: 1050

    • For recent important examples of radical carbonylations of alkyl halides, see:
    • 15d Sargent BT. Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 7520
    • 15e Chow SY. Stevens MY. Åkerbladh L. Bergman S. Odell LR. Chem. Eur. J. 2016; 22: 9155
    • 15f Yin HF. Skrydstrup T. J. Org. Chem. 2017; 82: 6474
    • 15g Kobayashi S. Kawamoto T. Uehara S. Fukuyama T. Ryu I. Org. Lett. 2010; 12: 1548
    • 15h Kawamoto T. Okada T. Curran DP. Ryu I. Org. Lett. 2013; 15: 2144
    • 15i Fusano A. Fukuyama T. Nishitani S. Inouye T. Ryu I. Org. Lett. 2010; 12: 2410
    • 15j McMahon CM. Renn MS. Alexanan EJ. Org. Lett. 2016; 18: 4148
    • 15k Sumino S. Ui T. Hamada Y. Fukuyama T. Ryu I. Org. Lett. 2015; 17: 4952
    • 15l Domański S. Staszewska-Krajewska O. Chaładaj W. J. Org. Chem. 2017; 82: 7998
    • 15m Li YH. Zhu FX. Wang ZC. Rabeah J. Breckner A. Wu X.-F. ChemCatChem 2017; 9: 915
    • 16a Zhu X. Wang Y.-F. Ren W. Zhang F.-L. Chiba S. Org. Lett. 2013; 15: 3214
    • 16b Anstead GM. Altenbach RJ. Wilson SR. Katzenellenbogen JA. J. Med. Chem. 1988; 31: 1316
    • 16c Wang ZY. Dufresne C. Leblanc Y. Li CS. Gauthier JY. Lau CK. Therien M. Roy P. US 6174874, 2001
    • 16d Govek SP. Smith ND. ITL 159769, 2011
  • 17 Typical Procedure for the Synthesis of 3aa: A 25 mL flask equipped with a magnetic stir bar was charged with potassium phenyltrifluoroborate 2a (0.5 mmol, 94.9 mg), TBAI (0.1 mmol, 37.6 mg), Na2CO3 (2.0 mmol, 213.0 mg), and PEG-400 (2 mL) before standard cycles of evacuation and back-filling with anhydrous and pure carbon monoxide. Benzyl chloride 1a (1.0 mmol, 141.4 μL) was added successively. The mixture was then stirred at 100 °C for 3 h. After being allowed to cool to room temperature, the reaction mixture was diluted with water (3 mL) and extracted with diethyl ether (4 × 5 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The residue was purified by column chromatography on silica gel (petroleum ether/diethyl ether, 100:1) to afford 3aa (185.7 mg, 88%) as a white solid (mp 119.6–120.0 °C). 1H NMR (400 MHz, CDCl3): δ = 7.85–7.83 (m, 2 H), 7.49 (tt, J = 7.4, 1.2 Hz, 1 H), 7.39–7.32 (m, 4 H), 7.24 (d, J = 8.2 Hz, 1 H), 7.20 (d, J = 2.0 Hz, 1 H), 7.04 (dd, J = 8.3, 2.1 Hz, 1 H), 6.87 (dd, J = 8.2, 2.1 Hz, 1 H), 4.70 (t, J = 7.3 Hz, 1 H), 3.45 (dd, J = 13.8, 7.6 Hz, 1 H), 2.96 (dd, J = 13.8, 7.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 197.7, 139.2, 138.5, 135.9, 133.5, 133.2, 132.3, 131.8, 131.0, 130.9, 130.6, 130.3, 129.9, 128.8, 128.6, 128.6, 127.6, 54.4, 39.0
  • 18 Miiller-Markgraf W. Troe J. J. Phys. Chem. 1988; 92: 4899
  • 19 For a review on carbonylation of organoboranes, see: Brown HC. Acc. Chem. Res. 1969; 2: 65
  • 20 Chen ZW. Jiang HF. Wang AZ. Yang SR. J. Org. Chem. 2010; 75: 6700