Synlett 2018; 29(03): 359-363
DOI: 10.1055/s-0036-1591501
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Synthesis of Aryl Nitriles: Using α-Imino­nitrile as Cyano Source for Aryl Halide Cyanations

Yu-Long Shi
College of Pharmaceutic Science, Soochow University, SuZhou 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Qing Yuan
College of Pharmaceutic Science, Soochow University, SuZhou 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Zhen-Bang Chen
College of Pharmaceutic Science, Soochow University, SuZhou 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Fang-Ling Zhang
College of Pharmaceutic Science, Soochow University, SuZhou 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Kui Liu
College of Pharmaceutic Science, Soochow University, SuZhou 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
,
Yong-Ming Zhu*
College of Pharmaceutic Science, Soochow University, SuZhou 215123, P. R. of China   Email: zhuyongming@suda.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 27 July 2017

Accepted after revision: 26 September 2017

Publication Date:
03 November 2017 (online)


Abstract

An efficient and ligand-free palladium-catalyzed exchange reaction to synthesize aryl nitriles by using α-iminonitrile as a starting reagent has been developed. This methodology provides an optional method for the synthesis of aryl nitriles with moderate to good yields. At the same time, this approach is adaptable for many substrates.

Supporting Information

 
  • References and Notes

    • 1a Kleemann A. Engel J. Kutscher B. Reichert D. Pharmaceutical Substance: Synthesis Patents, Applications . 4th ed. Georg Thieme; Stuttgart: 2001
    • 1b Miller JS. Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 1c Fleming FF. Wang Q. Chem. Rev. 2003; 103: 2035
    • 2a Rappoport Z. Chemistry of the Cyano Group . Wiley; London: 1970
    • 2b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. VCH; New York: 1989
    • 3a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 3b Galli C. Chem. Rev. 1988; 88: 765
    • 4a Rosenmund KW. Struck E. Ber. Dtsch. Chem. Ges. 1919; 2: 1749
    • 4b Lindley J. Tetrahedron 1984; 40: 1433
    • 5a Sakakibara Y. Okuda F. Shimobayashi A. Kirino K. Sakai M. Uchino N. Takagi K. Bull. Chem. Soc. Jpn. 1988; 61: 1985
    • 5b Anderson BA. Bell EC. Ginah FO. Harn NK. Pagh LM.. Wepsiec JP. J. Org. Chem. 1998; 63: 8224
    • 5c Yang C. Williams JM. Org. Lett. 2004; 6: 2837
    • 5d Cristau H.-J. Ouali A. Spindler J.-F. Taillefer M. Chem. Eur. J. 2005; 11: 2483
    • 7a Tschaen DM. Desmond R. King AO. Fortin MC. Pipik B. King S. Verhoeven TR. Synth. Commun. 1994; 24: 887
    • 7b Maligres PE. Waters MS. Fleitz F. Askin D. Tetrahedron Lett. 1999; 40: 8193
    • 7c Alterman M. Hallberg A. J. Org. Chem. 2000; 65: 7984
    • 7d Chidambaram R. Tetrahedron Lett. 2004; 45: 1441
    • 7e Jensen RS. Gajare AS. Toyota K. Yoshifuji M. Ozawa F. Tetrahedron Lett. 2005; 46: 8645
    • 7f Buono FG. Chidambaram R. Mueller RH. Waltermire RE. Org. Lett. 2008; 10: 5325
    • 7g Martin MT. Liu B. Cooley BE. Jr. Eaddy JF. Tetrahedron Lett. 2007; 48: 2555
    • 8a Chatani N. Hanafusa T. J. Org. Chem. 1986; 51: 4714
    • 8b Sundermeier M. Mutyala S. Zapf A. Spannenberg A. Beller M. J. Organomet. Chem. 2003; 684: 50
    • 9a Schareina T. Zapf A. Beller M. Chem. Commun. 2004; 1388
    • 9b Weissman SA. Zewge D. Chen C. J. Org. Chem. 2005; 70: 1508
    • 9c Schareina T. Zapf A. Beller M. Tetrahedron Lett. 2005; 46: 2585
    • 9d Grossman O. Gelman D. Org. Lett. 2006; 8: 1189
    • 9e Schareina T. Zapf A. Mägerlein W. Müller N. Beller M. Tetrahedron Lett. 2007; 48: 1087
  • 10 Luo F.-H. Chu C.-I. Cheng C.-H. Organometallics 1998; 17: 1025
  • 11 Stewart TD. Fontana BJ. J. Am. Chem. Soc. 1940; 62: 3281
  • 12 Wen Q. Jin J. Hu B. Lu P. Wang Y. RSC Advances 2012; 2: 6167
  • 13 Jiang Z. Huang Q. Chen S. Long L. Zhou X. Adv. Synth. Catal. 2012; 354: 589
  • 14 Zhang Z. Liebeskind LS. Org. Lett. 2006; 8: 4331
  • 15 Sato N. Yue Q. Tetrahedron 2003; 59: 5831
  • 16 Anbarasan P. Neumann H. Beller M. Angew. Chem. Int. Ed. 2011; 50: 519 ; Angew. Chem.; 2011, 123, 539
  • 17 Kim J. Kim HJ. Chang S. Angew. Chem. Int. Ed. 2012; 51: 11949
  • 18 Wen QD. Lu P. Wang YG. Tetrahedron Lett. 2014; 55: 1271
    • 19a Zhang LP. Lu P. Wang YG. Chem. Commun. 2015; 2840
    • 19b Zhang LP. Lu P. Wang YG. Org. Biomol. Chem. 2015; 13: 8322
  • 20 General Procedure for the Synthesis of α-Iminonitrile: t-Butyl isocyanide (1.5 mmol), iodobenzene (0.5 mmol), PdCl2 (0.05 mmol), PCy3 (0.1 mmol), Cs2CO3 (1.0 mmol), and 4 Å MS (100 mg) were added into a 15 mL sealed tube equipped with a magnetic stirring bar and stirred in DMF (2 mL) under argon at 135 °C for 18 h. After completion of the reaction as detected by TLC, it was poured into water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were dried (Na2SO4) and evaporated. The residue was purified on a silica gel column using petroleum ether/EtOAc as the eluent to give the pure target product. N-(tert-Butyl)benzimidoyl Cyanide: Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.00–7.97 (m, 2 H), 7.52–7.40 (m, 3 H), 1.53 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 136.8 (s), 131.8 (s), 128.8 (s), 127.3 (s), 111.8 (s), 58.5 (s), 29.5 (s). HRMS (CI): m/z [M + H]+ calcd for C12H14N2: 186.1157; found: 186.1154.
  • 21 General Procedure for the Synthesis of the Cyanate Product: Aryl halide (0.5 mmol), α-iminonitrile (0.6 mmol), Cu(TFA)2 (1.0 mmol), Pd(OAc)2 (0.1 mmol) and DMF (2 mL)were added to a 15 mL sealed tube containing a magnetic stirring bar, and the mixture was stirred under air at 120 °C for 24 h (the progress of the reaction was monitored by TLC). The mixture was poured into water (10 mL) and extracted with ethyl acetate (3 × 10 mL). The organic phase was dried with Na2SO4, evaporated, and purified by by silica gel column chromatography. 4-Methoxy-benzonitrile (2a): See ref 19. White solid; mp 59–61 °C. 1H NMR (400 MHz, CDCl3): δ = 7.55 (d, J = 8.8 Hz, 2 H), 6.92 (d, J = 8.8 Hz, 2 H), 3.83 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 162.8 (s), 133.9 (s), 119.2 (s), 114.8 (s), 103.9 (s), 77.5 (s), 77.2 (s), 76.8 (s), 55.5 (s).