Synthesis 2018; 50(03): 539-547
DOI: 10.1055/s-0036-1591500
paper
© Georg Thieme Verlag Stuttgart · New York

A General Protocol for Radical Anion [3+2] Cycloaddition Enabled by Tandem Lewis Acid Photoredox Catalysis

Adrian G. Amador
a  Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA   Email: tyoon@chem.wisc.edu
,
Evan M. Sherbrook
a  Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA   Email: tyoon@chem.wisc.edu
,
Zhan Lu
b  Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. of China
,
a  Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA   Email: tyoon@chem.wisc.edu
› Author Affiliations
This work was conducted using funding from the NIH (GM095666). The mass spectroscopy facilities at UW-Madison are funded in part by the NIH (S10OD020022), as are the NMR facilities (S10 OD012245).
Further Information

Publication History

Received: 04 September 2017

Accepted after revision: 28 September 2017

Publication Date:
19 October 2017 (eFirst)

Abstract

A method for intermolecular [3+2] cycloaddition between aryl cyclopropyl ketones and alkenes involving the combination of Lewis acid and photoredox catalysis is reported. In contrast to other more common methods for [3+2] cycloaddition, these conditions operate using a broad range of both electron-rich and electron-deficient reaction partners. The critical factors predicting the success of these reactions is the redox potential of the cyclopropyl ketone and the ability of the alkene to stabilize a key radical intermediate.

Supporting Information

 
  • References


    • For recent reviews:
    • 1a Hashimoto T. Maruoka K. Chem. Rev. 2015; 115: 5366
    • 1b Heasley B. Eur. J. Org. Chem. 2009; 1477
    • 1c Hartley RC. Caldwell ST. J. Chem. Soc., Perkin Trans. 1 2000; 477

      For examples of cyclizations:
    • 2a Parr BT. Li Z. Davies HM. L. Chem. Sci. 2011; 2: 2378
    • 2b Raimondi W. Lettieri G. Dulcére J.-P. Bonne D. Rodriguez J. Chem. Commun. 2010; 46: 7247
    • 2c Unger R. Weisser F. Chinkov N. Stanger A. Cohen T. Marek I. Org. Lett. 2009; 11: 1853
    • 2d Marcé P. Díaz Y. Matheu MI. Castilló S. Org. Lett. 2008; 10: 4735
    • 2e Crimmins MT. King BW. J. Org. Chem. 1996; 61: 4192

      For examples of ring expansions:
    • 3a Yin Q. You S.-L. Org. Lett. 2014; 16: 1810
    • 3b Zhu D.-Y. Hang F.-M. Wang S.-H. Chem. Eur. J. 2015; 21: 15502

      For recent examples of zwitterionic intermediates in [3+2] cycloadditions:
    • 4a Trost BM. Ehmke V. Org. Lett. 2014; 16: 2708
    • 4b Grover HK. Emmet MR. Kerr MA. Org. Biomol. Chem. 2015; 13: 655
    • 4c Trost BM. Morris PJ. Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
    • 4d Zhou W. Wang H. Tao M. Zhu C-Z. Lin T-Y. Zhang J. Chem. Sci. 2017; 8: 4660
  • 5 Recent example with vinyl carbenoids: Briones JF. Davies HM. L. J. Am. Chem. Soc. 2013; 135: 13314
  • 6 Recent example of reductive cycloaddition: Ahlin JS. E. Donets PA. Cramer N. Angew. Chem. Int. Ed. 2014; 53: 13229
  • 7 Yoon TP. ACS Catal. 2013; 3: 895
    • 8a Lu Z. Shen M. Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
    • 8b Amador AG. Sherbrook EM. Yoon TP. J. Am. Chem. Soc. 2016; 138: 4722
  • 9 For a conceptually similar photocatalytic radical anion cycloaddition of nitrocyclopropanes by one of us, see: Wang C. Ren X. Xie H. Lu Z. Chem. Eur. J. 2015; 21: 9676

    • For photocatalytic radical cation cycloadditions of aminocyclopropanes, see:
    • 10a Maity S. Zhu M. Shinabery RS. Zheng N. Angew. Chem. Int. Ed. 2012; 51: 222
    • 10b Nguyen TH. Morris SA. Zheng N. Adv. Synth. Catal. 2014; 356: 2831

      For leading references on the use of C-acylimidazole auxiliaries in photoredox catalysis, see:
    • 11a Tyson EL. Farney EP. Yoon TP. Org. Lett. 2012; 14: 1110
    • 11b Huo H. Shen X. Wang C. Zhang L. Röse P. Chen LA. Harms K. Marsch M. Hilt G. Meggers E. Nature 2014; 515: 100
    • 11c Huang X. Webster RD. Harms K. Meggers E. J. Am. Chem. Soc. 2016; 138: 12636
  • 12 Cismesia MA. Yoon TP. Chem. Sci. 2015; 6: 5426
    • 13a Tanko JM. Drumright RE. J. Am. Chem. Soc. 1992; 114: 1844
    • 13b Chahma M. Li X. Phillips JP. Schwartz P. Brammer LE. Wang Y. Tanko JM. J. Phys. Chem. A 2005; 109: 3372
    • 13c Tanko JM. Drumright RE. J. Am. Chem. Soc. 1990; 112: 5362
  • 14 Pangborn AB. Giardello MA. Grubbs RH. Rosen RK. Timmers FJ. Organometallics 1996; 15: 1518
  • 15 Zimmerman HE. Wang P. J. Org. Chem. 2003; 68: 9226