Synlett 2017; 28(19): 2587-2593
DOI: 10.1055/s-0036-1590985
cluster
© Georg Thieme Verlag Stuttgart · New York

Chemoselective Ruthenium-Catalyzed C–O Bond Activation: Orthogonality of Nickel- and Palladium-Catalyzed Reactions for the Synthesis of Polyaryl Fluorenones

Livia C. R. M. da Frota
a  Laboratório de Catálise Orgânica, Instituto de Pesquisa de Produtos Naturais, Centro de Ciências da Saúde, Bl H, Ilha da Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
b  Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: snieckus@chem-queensu.ca
,
Cédric Schneider
c  Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
,
Mauro B. de Amorim
d  Laboratório de Modelagem Molecular e Espectroscopia Computacional, Instituto de Pesquisa de Produtos Naturais, Centro de Ciências da Saúde, Bl H, Ilha da Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
,
Alcides J. M. da Silva
a  Laboratório de Catálise Orgânica, Instituto de Pesquisa de Produtos Naturais, Centro de Ciências da Saúde, Bl H, Ilha da Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
,
Victor Snieckus*
b  Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: snieckus@chem-queensu.ca
› Author Affiliations
Further Information

Publication History

Received: 05 October 2017

Accepted after revision: 31 October 2017

Publication Date:
14 November 2017 (online)


Published as part of the Cluster C–O Activation

Abstract

Ruthenium-catalyzed C–O bond activation/arylation of methoxy and O-carbamoyl-substituted fluorenones is reported. Established are new reactions of compound 1 (X = H) to aryl (2) and 1,8-diaryl (3) fluorenones. Orthogonal ruthenium-, palladium- and nickel-catalyzed reactions with Suzuki–Miyaura reactions to afford 1,4-diaryl (4) and 1,4,8-triaryl fluorenones (5) are also described. The ready availability of starting methoxy fluorenones by directed ortho and remote metalation tactics confers facility to the presented reactions which may find application in material science areas. DFT calculations have been performed to rationalize the lack of C–H bond reactivity in the ruthenium-catalyzed reaction.

Supporting Information

 
  • References and Notes

    • 1a Review: Shi Y. Gao S. Tetrahedron 2016; 72: 1717
    • 1b Talapatra SK. Bose S. Mallik AK. Talapatra B. J. Indian Chem. Soc. 1984; 61: 1010
    • 1c Talapatra SK. Bose S. Mallik AK. Talapatra B. Tetrahedron 1985; 41: 2765
    • 1d Talapatra SK. Chakraborty S. Bose S. Talapatra B. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1988; 27: 250
    • 1e Alves T. de Oliveira AB. Snieckus V. Tetrahedron Lett. 1988; 29: 2135
    • 1f Sargent MV. J. Chem. Soc., Perkin Trans. 1 1987; 2553
    • 1g Wang W. Snieckus V. J. Org. Chem. 1992; 57: 424
    • 1h Wu XY. Qin GW. Fan DJ. Xu RS. Phytochemistry 1994; 36: 477
    • 1i Fan C. Wang W. Wang Y. Qin G. Zhao W. Phytochemistry 2001; 57: 1255
    • 1j Wang S. Wen B. Wang N. Liu J. He L. Arch. Pharm. Res. 2009; 32: 521
    • 1k Hu QF. Zhou B. Huang JM. Gao XM. Shu LD. Yang GY. Che CT. J. Nat. Prod. 2013; 76: 292

      Antimicrobial activity – Fluostatins A and B:
    • 2a Akiyama T. Harada S. Kojima F. Takahashi Y. Imada C. Okami Y. Muraoka Y. Aoyagi T. Takeuchi T. J. Antibiotics 1998; 51: 553
    • 2b Choi S. Larson MA. Hinrichs SH. Narayanasamy P. Bioorg. Med. Chem. Lett. 2016; 26: 1997

    • Anticancer activity:
    • 2c Perry PJ. Read MA. Davies RT. Gowan SM. Reszka AP. Wood AA. Kelland LR. Neidle S. J. Med. Chem. 1999; 42: 2679
    • 2d Lee CC. Chang DM. Huang KF. Chen CL. Chen TC. Lo Y. Guh JH. Huang HS. Bioorg. Med. Chem. 2013; 21: 7125

    • Anti-HIV activity:
    • 2e Hu Q.-F. Zhou B. Huang J.-M. Gao XM. Shu L.-D. Yang G.-Y. Che C.-T. J. Nat. Prod. 2013; 76: 292
    • 2f Campo MA. Larock RC. J. Org. Chem. 2002; 67: 5616 ; and references cited therein

      Organic light-emitting diode properties:
    • 3a Uckert F. Tak Y.-H. Mullen K. Bassler H. Adv. Mater. 2000; 12: 905
    • 3b Gong X. Moses D. Heeger AJ. Xiao S. J. Phys. Chem. B. 2004; 108: 8601
    • 3c Jaramillo-Isaza F. Turner ML. J. Mater. Chem. 2006; 16: 83
    • 3d Hayashi S. Inagi S. Fuchigami T. Macromolecules 2009; 42: 3755
    • 3e Goel A. Chaurasia S. Dixit M. Kumar V. Parakash S. Jena B. Verma JK. Jain M. Anand RS. Manoharan S. Org. Lett. 2009; 11: 1289
    • 3f Chuanjiang Q. Ashraful I. Liyuan H. J. Mater. Chem. 2012; 22: 19236
    • 3g Thakellapalli H. Li S. Farajidizaji B. Baughman NN. Akhmedov NG. Popp BV. Wang KK. Org. Lett. 2017; 19: 2674

      Liquid crystal:
    • 4a Lincker F. Heinrich B. De Bettignies R. Rannou P. Pécaut J. Grévin B. Pron A. Donnio B. Demadrille R. J. Mater. Chem. 2011; 21: 5238
    • 4b McCubbin JA. Tong X. Wang R.-Y. Zhao Y. Snieckus V. Lemieux RP. J. Am. Chem. Soc. 2004; 126: 1161

      Friedel–Crafts ring closure of biarylcarboxylic acid or biarylamide:
    • 5a Wade LG. Acker KJ. Earl RA. Osteryoung RA. J. Org. Chem. 1979; 44: 3724
    • 5b Fu J.-M. Zhao B.-P. Sharp MJ. Snieckus V. Can. J. Chem. 1994; 72: 227
    • 5c Barluenga J. Trincado M. Rubio E. Gonzalec JM. Angew. Chem. Int. Ed. 2006; 45: 3140
    • 5d Chinnagolla RK. Jeganmohan M. Org. Lett. 2012; 14: 5246
    • 5e Reim S. Lau M. Langer P. Tetrahedron Lett. 2006; 47: 6903

    • Oxidation of fluorenes or fluorenols:
    • 5f Yang G. Zhang Q. Miao H. Tong X. Xu J. Org. Lett. 2005; 7: 263
    • 5g Liu T.-P. Liao Y.-X. Xing C.-H. Hu Q.-S. Org. Lett. 2011; 13: 2452

    • Ring contraction:
    • 5h Mike CA. Ferede R. Allison NT. Organometallics 1988; 7: 1457
    • 5i Patra A. Ghorai SK. De JS. Mai D. Synthesis 2006; 2556

      For reviews on DoM, see:
    • 6a Snieckus V. Chem. Rev. 1990; 90: 879
    • 6b Hartung CG. Snieckus V. In Modern Arene Chemistry . Astruc D. Wiley-VCH; New York: 2002: 330
    • 6c Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
    • 6d Macklin T. Snieckus V. In Handbook of C–H Transformations . Dyker G. Wiley-VCH; New York: 2005: 106

      For Mg-, Zn-, and Al-amide base-mediated DoM, see:
    • 7a Wunderlich SH. Rohbogner CJ. Unsinn A. Knochel P. Org. Process Res. Dev. 2010; 14: 339
    • 7b Wunderlich SH. Knochel P. Angew. Chem. Int. Ed. 2009; 48: 1501

      For review on DoM/cross-coupling/DreM strategies, see:
    • 8a Anctil EJ.-G. Snieckus V. J. Organomet. Chem. 2002; 653: 150
    • 8b Anctil EJ.-G. Snieckus V. In Metal-Catalyzed Cross-Coupling Reactions . 2nd ed. Diederich F. de Meijere A. Wiley-VCH; Weinheim: 2004: 761
    • 8c Cosman JL. Boar J. Rantanen T. Snieckus V. Platinum Met. Rev. 2013; 57: 234
    • 9a Locker J.-W. Dixon DD. Risgaard B. Baran PS. Org. Lett. 2011; 13: 5628
    • 9b Seo S. Slater M. Greaney MF. Org. Lett. 2012; 14: 2650
    • 9c Shi Z. Glorius F. Chem. Sci. 2013; 4: 829
    • 9d Werts S. Leifert D. Studer A. Org. Lett. 2013; 15: 928

      Dual C–H bond activation:
    • 10a Li H. Zhu R.-Y. Shi W.-J. He K.-H. Shi Z.-J. Org. Lett. 2012; 14: 4850
    • 10b Gandeepan P. Hung C.-H. Cheng C.-H. Chem. Commun. 2012; 48: 9379
    • 10c Wan J.-C. Huang J.-M. Jhan Y.-H. Hsieh J.-C. Org. Lett. 2013; 15: 2742

    • C–H bond activation:
    • 10d Campo MA. Larock RC. J. Org. Chem. 2002; 67: 5616
    • 10e Zhao J. Yeu D. Campo MA. Larock RC. J. Am. Chem. Soc. 2007; 129: 5288
    • 10f Thirunavukkarasu VS. Parthasarathy K. Cheng C.-H. Angew. Chem. Int. Ed. 2008; 47: 9462
    • 10g Sun C.-L. Liu N. Li B.-J. Yu D.-G. Wang Y. Shi Z.-J. Org. Lett. 2010; 12: 184
    • 10h Chinnagolla RK. Jeganmohan M. Org. Lett. 2012; 14: 5246
    • 10i Kumar DR. Satyanarayana G. Org. Lett. 2015; 17: 5894

    • Oxidative C-H/C-H:
    • 10j Thirunavukkarasu VS. Cheng C.-H. Chem. Eur. J. 2011; 17: 14723
    • 10k Li H. Zhu R.-Y. Shi W.-J. He K.-H. Shi Z.-J. Org. Lett. 2012; 14: 4850
    • 10l Sun D. Li B. Lan J. You J. Chem. Commun. 2016; 52: 3635

      C–H decarboxylative coupling:
    • 11a Fukuyama T. Maetani S. Miyagawa K. Ryu I. Org. Lett. 2014; 16: 3216
    • 11b Cai Z. Hou X. Hou L. Hu Z. Zhang B. Jin Z. Synlett 2016; 27: 395 ; see also ref. 9b
  • 12 Campo MA. Larock RC. Org. Lett. 2000; 2: 3675
    • 13a Tong L. J. Am. Chem. Soc. 1998; 120: 6000
    • 13b Nandakumar M. Karunakaran J. Mohanakrishnan AK. Org. Lett. 2014; 16: 3068
    • 13c Kato S.-I. Kijima T. Shiota Y. Yoshihara T. Tobita S. Yoshizawa K. Nakamura Y. Tetrahedron Lett. 2016; 57: 4604
  • 14 Ye F. Haddad M. Michelet V. Ratovelomanana-Vidal V. Org. Lett. 2016; 18: 5612
  • 15 Zhu H. Chen Z. Org. Lett. 2016; 18: 488
  • 16 This method requires a five-step process for the synthesis of the precursor bistriflate of 1,4-dihydroxyfluorenone, see: Sonneck M. Kuhrt D. Kónya K. Patonay T. Villinger A. Langer P. Synlett 2016; 27: 75
  • 17 George SR. D. Scott LT. Harper JB. Polycyclic Aromat. Compd. 2016; 36: 697; and references therein

    • Reviews:
    • 18a Yu DG. Li BJ. Shi ZJ. Acc. Chem. Res. 2010; 43: 1486
    • 18b Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita AM. Garg NK. Persec V. Chem. Rev. 2011; 111: 1346
    • 18c Kakiuchi F. Kochi T. Murai S. Synlett 2014; 25: 2390
    • 18d Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 18e Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 18f Zeng H. Qiu Z. Dominguez-Herta A. Hearne Z. Chen Z. Li C.-J. ACS Catal. 2017; 7: 510
    • 18g For recent efforts in the C–O activation area, see cluster of papers in Chatani N. Tomisu M. Snieckus V. Synlett; this issue.
    • 19a Li BJ. Yu DG. Sun CL. Shi ZJ. Chem. Eur. J. 2011; 17: 1728
    • 19b Tehetena M. Garg NK. Org. Process Res. Dev. 2013; 17: 29
    • 19c Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19
    • 19d Tobisu M. Chatani N. Top. Organomet. Chem. 2013; 44: 35

      COMe functional group activation – Ni-catalyzed Kumada–Tamao–Corriu-type reaction:
    • 20a Wenkert E. Michelotti EL. Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
    • 20b Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428

    • Ni-catalyzed Negishi-type reaction:
    • 20c Wang C. Ozaki T. Takita R. Uchiyama M. Chem. Eur. J. 2012; 18: 3482

    • Ni-catalyzed Mizoroki–Heck-type reaction:
    • 20d Matsubara R. Jamison TF. J. Am. Chem. Soc. 2010; 132: 6880

    • Ru-catalyzed Suzuki-Miyaura type reaction:
    • 20e Kakiuchi F. Usui M. Ueno S. Chatani N. Murai S. J. Am. Chem. Soc. 2004; 126: 2706

    • Ni-catalyzed Suzuki-Miyaura type reaction:
    • 20f Tobisu M. Shimasaki T. Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866

      C–OCONR2 functional group activation – Ni-catalyzed Suzuki–Miyaura type reaction:
    • 21a Antoft-Finch A. Blackburn T. Snieckus V. J. Am. Chem. Soc. 2009; 131: 17750
    • 21b Quasdorf KW. Antoft-Finch A. Liu P. Silberstein AL. Komaromi A. Blackburn T. Ramgren SD. Houk KN. Snieckus V. Garg NK. J. Am. Chem. Soc. 2011; 133: 6352
    • 21c Ramgren SD. Hie L. Ye Y. Garg NK. Org. Lett. 2013; 15: 3950

    • Ni-catalyzed Kumada–Tamao–Corriu-type reaction:
    • 21d Sengupta S. Leite M. Raslan DS. Quesnelle C. Snieckus V. J. Org. Chem. 1992; 57: 4066
    • 21e Jorgensen KB. Rantanen T. Dorfler T. Snieckus V. J. Org. Chem. 2015; 9410

    • Rh-catalyzed Suzuki–Miyaura-type reaction:
    • 21f Nakamura K. Yasui K. Tobisu M. Chatani N. Tetrahedron 2015; 71: 4484

    • C–OCSO2NR2 functional group activation – Ni-catalyzed Kumada–Tamao–Corriu-type reaction:
    • 21g Macklin TK. Snieckus V. Org. Lett. 2005; 7: 2519

    • Ni-catalyzed Suzuki–Miyaura-type reaction:
    • 21h Quashdorf KW. Riener M. Petrova KV. Garg NK. J. Am. Chem. Soc. 2009; 131: 17748
    • 21i C–OTf, C–OMs, and C–OTs functional group activation: see ref 18f.
    • 22a Shimasaki T. Konno Y. Tobisu M. Chatani N. Org. Lett. 2009; 11: 4890
    • 22b Tobisu M. Yasutome A. Kinuta H. Nakamura K. Chatani N. Org. Lett. 2014; 16: 5572
    • 23a Kakiuchi F. Matsuura Y. Kan S. Chatani N. J. Am. Chem. Soc. 2005; 127: 5936
    • 23b Ueno S. Mizushima E. Chatani N. Kakiuchi F. J. Am. Chem. Soc. 2006; 128: 16516
    • 23c Kondo H. Kochi T. Kakiuchi F. Org. Lett. 2017; 19: 794
    • 23d Suzuki Y. Yamada K. Watanabe K. Kochi T. Ie Y. Aso Y. Kakiuchi F. Org. Lett. 2017; 19: 3791

      Aryl C–H activation under Ru catalysis – α-tetralones and 1-benzosuberones:
    • 24a Kakiuchi F. Kan S. Igi K. Chatani N. Murai S. J. Am. Chem. Soc. 2003; 125: 1698
    • 24b Kakiuchi F. Matsuura Y. Kan S. Chatani N. J. Am. Chem. Soc. 2005; 127: 5936

    • Anthraquinones:
    • 24c Kitazawa K. Kochi T. Sato M. Kakiuchi F. Org. Lett. 2009; 11: 1951
    • 24d Matsumura D. Kitazawa K. Terai S. Kochi T. Ie Y. Nitani M. Aso Y. Kakiuchi F. Org. Lett. 2012; 14: 3882

    • 1-Indanone derivatives are reported to be unreactive under Pd catalysis:
    • 24e Sun C.-L. Liu N. Li B.-J. Yu D.-G. Wang Y. Shi Z.-J. Org. Lett. 2010; 12: 184

    • Acetophenones:
    • 24f Ueno S. Kochi T. Chatani N. Kakiuchi F. Org. Lett. 2009; 11: 855
    • 25a Zhao Y. Snieckus V. J. Am. Chem. Soc. 2014; 136: 11224
    • 25b Zhao Y. Snieckus V. Org. Lett. 2014; 16: 3200
    • 25c Zhao Y. Snieckus V. Chem. Commun. 2016; 52: 1681
  • 26 For recent cluster of paper in the area of synthetic aromatic chemistry, see: Snieckus V. Beilstein J. Org. Chem. 2011; 7: 1215
  • 27 Toluene and pinacolone are both solvents of choice for the Ru-catalyzed C–H and C–O activation reaction. Whereas pinacolone has been used as a hydrogen acceptor to suppress the reduction of the aromatic ketone substrate in the C–H activation reaction (see ref. 24b) such use for the C-O activation has, to the best of our knowledge, not been reported.
    • 28a Alessi M. Larkin AL. Ogilvie KA. Green LA. Lai S. Lopez S. Snieckus V. J. Org. Chem. 2007; 72: 1588
    • 28b Tilly D. Fu J.-M. Zhao B.-P. Alessi M. Castanet A.-S. Snieckus V. Mortier J. Org. Lett. 2010; 12: 68

    • Compound 1d has been previously prepared by a ten-step route:
    • 28c Kajigaeshi S. Kobayashi K. Kurata S. Kitajima A. Nakahara F. Nago H. Nishiida A. Fujisaki S. Nippon Kagaku Kaishi 1989; 12: 2052
  • 29 General Procedures to the Ru-Catalyzed Arylation of FluorenonesA dried Biotage microwave vial equipped with a magnetic stirring bar and a nitrogen inlet was sequentially charged with fluo­renone (1, 0.5 mmol), boronic ester (6, 0.5–1 mmol), pinacolone (0.5 mL), and RuH2(CO)(PPh3)3 (10 mol%). The reaction mixture was heated under MW irradiation at 150 °C for 2.5–8 h. The reaction mixture was extracted with EtOAc (15 mL), washed with brine, subjected to filtration, dried (Na2SO4), and concentrated under reduced pressure. Purification using flash column chromatography on silica gel (eluting with 1:9 hexanes/EtOAc) afforded product 2.1-(4-Fluorophenyl)-9H-fluoren-9-one (2g)Yellow solid, 91% yield; mp 156–158 °C (hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 7.4 Hz, 1 H), 7.55 (d, J = 7.4 Hz, 1 H), 7.53–7.46 (m, 5 H), 7.29 (t, J = 7.2 Hz, 1 H), 7.16 (dd, J = 8.7, 1.2 Hz, 1 H), 7.12 (d, J = 8.7 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 193.1 (C), 162.9 (d, 1JC–F = 247.3 Hz, C), 145.6 (C), 143.5 (C), 141.2 (C), 134.6 (CH), 134.3 (CH), 134.2 (C), 133.3 (d, 4JC–F = 3.2 Hz, C), 131.5 (CH), 130.9 (d, 3JC–F = 8.26 Hz, 2 CH), 129.6 (C), 129.3 (CH), 124.2 (CH), 120.1 (CH), 119.3 (CH), 114.87 (d, 2JC–F = 21.5 Hz, 2 CH). IR (CH2Cl2): 1709, 1159 cm–1. HRMS (ESI): m/z calcd for (C19H12FO)+: 275.0867; found: 275.0875.
  • 30 During the preparation of this manuscript Yasui et al. reported a reductive cleavage of aryl O-carbamate under Rh-catalysis using isopropanol as a reductant, see: Yasui K. Higashino M. Chatani N. Tobisu M. Synlett 28 2017; in press; DOI: 10.1055/s-0036-1589093.
  • 31 Zhao Y. Snieckus V. Org. Lett. 2015; 17: 4674
  • 32 Balasubramaniyan V. Chem. Rev. 1966; 66: 567
  • 33 For a review on Pd-catalyzed coupling of aryl chlorides, see: Littke AF. Fu G. Angew. Chem. Int. Ed. 2002; 41: 4176
  • 34 Wang Z. Zhou Y. Lam WH. Lin Z. Organometallics 2017; 36: 2354