CC BY ND NC 4.0 · SynOpen 2017; 01(01): 0143-0146
DOI: 10.1055/s-0036-1590959
letter
Copyright with the author

Ball-Milling Promoted Monobromination Reactions: One-pot Regioselective Synthesis of Aryl Bromides and α-Bromoketones by NBS and Recyclable MCM-41-SO3H at Room Temperature

N. Ghanbari, H. Ghafuri*, H. R. Esmaili Zand, M. Eslami
  • Catalysis and Organic Synthesis Research Laboratory, Department of Chemistry of Iran, University of Science and Technology, Tehran 16846-13114, Iran   Email: ghafuril@iust.ac.ir
Further Information

Publication History

Received: 09 August 2017

Accepted after revision: 23 October 2017

Publication Date:
16 November 2017 (online)

Abstract

An effective approach to monobromination reactions utilizing room temperature ball-milling is introduced for the synthesis of aryl bromides and bromoketones with N-bromosuccinimide (NBS) and MCM-41-SO3H. Advantages of this technique are short reaction times and high regioselectivity. In contrast to other techniques using microwaves, ultrasound, or ionic liquids, handling of sensitive materials is possible and furthermore, this method has advantages over other solvent-free techniques that require a higher reaction temperature for high yield of products.

Supporting Information

 
  • References

  • 1 Stolle A. Szuppa T. Leonhard SE. S. Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
  • 2 Kaupp G. Top. Curr. Chem. 2005; 254: 95
  • 3 Kaupp G. Prediction of Reactivity in Solid-State Chemistry . In Making Crystals by Design . Braga D. Grepioni F. Wiley-VCH; Weinheim; 2007: 87-148
  • 4 Kaupp G. CrystEngComm 2006; 794
  • 5 Tullberg E. Schacher F. Peters D. Frejd T. Synthesis 2006; 1183
  • 6 Watano S. Okamoto T. Tsuhari M. Koizumi I. Osako Y. Chem. Pharm. Bull. 2002; 50: 341
  • 7 Trost BM. Fleming I. Comprehensive Organic Synthesis, Vol. 9, Cumulative Index . Pergamon; Oxford; 1991
  • 10 Kad GL. Bhandari M. Kau J. Rathee R. Singh J. Green Chem. 2001; 3: 275
  • 11 Sharghi H. Sarvari MH. J. Chem. Res., Synop. 2000; 24
  • 12 Fazaeli R. Tangestaninejad S. Aliyan H. Catal. Commun. 2006; 7: 205
  • 13 Damljanovic I. Vukicevic M. Vukicevic RD. Wiener Mh. 2006; 137: 301
  • 14 Shriner RL. Hermann CK. F. Morrill TC. Curtin DY. Fuson RC. The Systematic Identification of Organic Compounds, 8th ed. . Wiley; NewYork; 2003: 656
  • 15 Das B. Venkateswarlu K. Krishnaiah M. Holla H. Tetrahedron Lett. 2006; 47: 8693
  • 16 Das B. Venkateswarlu K. Mahender G. Mahender I. Tetrahedron Lett. 2005; 46: 3041
  • 17 Ghafuri H. Hashemi MM. J. Sulfur Chem. 2009; 30: 578
    • 18a Mendonça GF. Sindra HC. de Almeida LS. Esteves PM. de Mattos MC. S. Tetrahedron Lett. 2009; 50: 473
    • 18b Meketa ML. Mahajan YR. Weinreb SM. Tetrahedron Lett. 2005; 46: 4749
  • 19 Kaupp G. CrystEngComm 2009; 388
  • 20 Noman A. Rahman M. Bishop R. Tan R. Shan N. Green Chem. 2005; 7: 207
  • 21 Pravst I. Zupan M. Stavber S. Green Chem. 2006; 8: 1001
  • 22 James SL. Adams CJ. Bolm C. Braga D. Collier P. Friščić T. Grepioni F. Harris KD. M. Hyett G. Jones W. Krebs A. Mack J. Maini L. Orpen AG. Parkin IP. Shearouse WC. Steed JW. Waddell DC. Chem. Soc. Rev. 2012; 41: 413
  • 23 Do JL. Friščić T. ACS Cent. Sci. 2017; 3: 13
  • 24 Jiménez-González C. Constable DJ. C. Ponder CS. Chem. Soc. Rev. 2012; 41: 1485
  • 25 Czaja A. Leung E. Trukhan N. Müller U. Industrial MOF synthesis . In Metal-Organic Frameworks: Applications from Catalysis to Gas Storage . Farrusseng D. Wiley-VCH Verlag GmbH; Weinheim; 2011
  • 26 Mokhtari J. Naimi-Jamal MR. Hamzeali H. Dekamin MG. Kaupp G. ChemSusChem 2009; 2: 248
  • 27 Kaupp G. J. Phys. Org. Chem. 2008; 21: 630
  • 28 Garay AL. Pichon A. James SL. Chem. Soc. Rev. 2007; 36: 846
    • 29a Pichon A. James SL. CrystEngComm 2008; 1839
    • 29b Yuan W. Friščić T. Apperley D. James SL. Angew. Chem. Int. Ed. 2010; 49: 3916
  • 30 Kubias B. Fait MJ. G. Schlögl R. In Handbook of Heterogeneous Catalysis . Ertl G. Knözinger H. Schüth F. Weitkamp J. Wiley-VCH; Weinheim; 2008. 2nd ed 571-583
  • 31 Friščić T. J. Mater. Chem. 2010; 20: 7599
  • 32 Friščić T. Jones W. Cryst. Growth Des. 2009; 9: 1621
  • 33 Juribasić M. Užarević K. Gracin D. Ćurić M. Chem. Commun. 2014; 10287
    • 34a Tan D. Mottillo C. Katsenis AD. Štrukil V. Friščić T. Angew. Chem. Int. Ed. 2014; 53: 9321
    • 34b Zille M. Stolle A. Wild A. Schubert US. RSC Adv. 2014; 4: 13126
    • 34c Paveglio GC. Longhi K. Moreira DN. München TS. Tier AZ. Gindri IM. Bender CR. Frizzo CP. Zanatta N. Bonacorso HG. Martins MA. P. ACS Sustainable Chem. Eng. 2014; 2: 1895
    • 34d Ghafuri H. Khodashenas S. Naimi-Jamal MR. J. Iran. Chem. Soc. 2015; 12: 599
    • 35a Rostamizadeh Sh. Amani AM. Mahdavinia GH. Amiri G. Sepehrian H. Ultrason. Sonochem. 2010; 17: 306
    • 35b Dekamin MG. Mokhtari Z. Tetrahedron 2012; 68: 922
  • 36 Macharla AK. Nappunni RC. Marri MR. Peraka S. Nama N. Tetrahedron Lett. 2012; 53: 191
  • 37 Podgoršek A. Stavber S. Zupan M. Iskra J. Green Chem. 2007; 9: 1212
  • 38 Guan XY. Al-Misba Z. Huang KW. Arabian J. Chem. 2015; 8: 892
  • 39 Cao Z. Shi D. Qu Y. Tao C. Liu W. Yao G. Molecules 2013; 18: 15717
  • 40 Izumisaw Y. Togo H. Green Sustainable Chem. 2011; 1: 54
  • 41 Adibi H. Hajipour AR. Hashemi M. Tetrahedron Lett. 2007; 48: 1255
  • 42 Li X. Wang Y. Ding C. Zhang G. Liangc X. Synlett 2011; 2265
  • 43 Moghaddam FM. Zargarani D. Synth. Commun. 2009; 39: 4212
  • 44 Sharma SK. Agarwal DD. J. Agric. Life Sci. 2014; 16: 65
  • 45 Pathak S. Kundu A. Pramanik A. RSC Adv. 2014; 4: 10180
  • 46 Pravst I. Zupana M. Stavber S. Tetrahedron Lett. 2006; 47: 4707
  • 47 Meshram HM. Reddy PN. Vishnu P. Sadashiv K. Yadav JS. Tetrahedron Lett. 2006; 47: 991
  • 48 Preparation of MCM-41-SO3H: Diethylamine (2.7 g) was added to deionized water (42 mL) at room temperature. The mixture was stirred for 10 min, then cetyltrimethylammonium bromide (1.47 g) was added and the mixture was stirred for 30 min until a clear solution was obtained. To this mixture, tetraethoxysilane (2.1 g) was added dropwise and the pH of the reaction mixture was maintained at 8.5 by adding hydrochloric acid solution (1 M). After 2 h, the solid product was filtered, washed with deionized water, dried at 45 °C for 12 h, and then calcined at 550 °C for 5 h
  • 49 Preparation of MCM-41-SO3H: Dichloromethane (5 mL) containing MCM-41 (1.0 g) was added to a flask equipped with a pressure equilibrating dropping funnel charged with chlorosulfonic acid (2 mL) and equipped with a gas inlet tube. The chlorosulfonic acid was added dropwise over 30 min at room temperature and HCl gas generated was swept from the reaction vessel. The mixture was then stirred for 30 min and the solvent was evaporated to obtain MCM-41-SO3H
  • 50 General bromination experimental procedure: Substrate (1 mmol), NBS (0.1 g) and MCM-41-SO3H (0.2 g) were added to a ball-mill jar. Reaction was conducted at a rotational frequency of 30 Hz at room temperature and the reaction was followed by TLC. After completion, the mixture was separated and MCM-41-SO3H was recovered. The recovered MCM-41-SO3H was reused five more times without any decrease in its catalytic ability