Synlett 2018; 29(04): 519-524
DOI: 10.1055/s-0036-1590950
letter
© Georg Thieme Verlag Stuttgart · New York

Chemoselective Synthesis of N-Arylenaminones and 3-Aroylquinolines by Synergistic Control of Temperature and Amount of Catalyst

Pan Zhou
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. of China
,
Biao Hu
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. of China
,
Kairui Rao
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. of China
,
Lingdan Li
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. of China
,
Jiao Yang
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. of China
,
Chuanzhu Gao
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. of China
,
Fengping Wang
b   Research Center of Food Engineering, Kunming University of Science and Technology, Kunming, 650504, P. R. of China   Email: yufuchao05@126.com   Email: yufc@kmust.edu.cn
,
Fuchao Yu*
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 31 July 2017

Accepted after revision: 11 October 2017

Publication Date:
23 November 2017 (online)


Abstract

An efficient and practical method has been developed for the divergent synthesis of N-arylenaminones and 3-aroylquinolines from 2-aminoaryl ketones and N,N-dimethylenaminones in the presence of 4-toluenesulfonic acid through synergistic control of the temperature and amount of catalyst. Furthermore, gram-scale synthesis and synthetic applications have been evaluated. Features of this protocol include controllable results, mild conditions, good functional-group tolerance, operational simplicity, and excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Jiang B. Yi M.-S. Tu M.-S. Wang S.-L. Tu S.-J. Adv. Synth. Catal. 2012; 354: 2504
    • 1b Iqbal N. Jung J. Park S. Cho EJ. Angew. Chem. Int. Ed. 2014; 53: 539
    • 1c Shang H. Wang Y. Tian Y. Feng J. Tang Y. Angew. Chem. Int. Ed. 2014; 53: 5662
    • 2a Chun YS. Xuan Z. Kim JH. Lee S.-g. Org. Lett. 2013; 15: 3162
    • 2b Kim JH. Bouffard J. Lee S.-g. Angew. Chem. Int. Ed. 2014; 53: 6435
    • 2c Li Q.-H. Wei L. Wang C.-J. J. Am. Chem. Soc. 2014; 136: 8685
    • 2d Chen P.-h. Xu T. Dong G. Angew. Chem. Int. Ed. 2014; 53: 1674
    • 2e Zhang X. Feng C. Jiang T. Li Y. Pan L. Xu X. Org. Lett. 2015; 17: 3576
    • 2f Shao J. Liu X. Shu K. Tang P. Luo J. Chen W. Yu Y. Org. Lett. 2015; 17: 4502
    • 2g Liao J.-Y. Shao P.-L. Zhao Y. J. Am. Chem. Soc. 2015; 137: 628
    • 3a Zhang Y.-S. Tang X.-Y. Shi M. Org. Chem. Front. 2015; 2: 1516
    • 3b Zhang X. Hou W. Zhang-Negrerie D. Zhao K. Du Y. Org. Lett. 2015; 17: 5252
    • 3c Chen K. Zhu Z.-Z. Liu J.-X. Tang X.-Y. Wei Y. Shi M. Chem. Commun. 2016; 52: 350
    • 5a Panne P. Fox JM. J. Am. Chem. Soc. 2007; 129: 22
    • 5b Santhoshkumar R. Mannathan S. Cheng C.-H. J. Am. Chem. Soc. 2015; 137: 16116
    • 6a Wang M. Rong Z.-Q. Zhao Y. Chem. Commun. 2014; 50: 15309
    • 6b Martínez ÁM. Echavarren J. Alonso I. Rodríguez N. Arrayás RG. Carretero J. Chem. Sci. 2015; 6: 5802
    • 6c Zhan G. Shi M.-L. He Q. Lin W.-J. Ouyang Q. Du W. Chen Y.-C. Angew. Chem. Int. Ed. 2016; 55: 2147
    • 6d Cheng Q.-Q. Yedoyan J. Arman H. Doyle MP. J. Am. Chem. Soc. 2016; 138: 44
  • 7 Xu H. Zhou B. Zhou P. Zhou J. Shen Y. Yu F.-C. Lu L.-L. Chem. Commun. 2016; 52: 8002
    • 8a Solan A. Nişanci B. Belcher M. Young J. Schäfer C. Wheeler KA. Török B. Dembinski R. Green Chem. 2014; 16: 1120
    • 8b Hashemi H. Saberi D. Poorsadeghic S. Niknam K. RSC Adv. 2017; 7: 7619
    • 9a Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 9b Candeias NR. Branco LC. Gois PM. P. Afonso CA. M. Trindade AF. Chem. Rev. 2009; 109: 2703
    • 9c Andrews S. Burgess SJ. Skaalrud D. Kelly JX. Peyton DH. J. Med. Chem. 2010; 53: 916
    • 11a Sakai N. Aoki D. Hamajima T. Konakahara T. Tetrahedron Lett. 2006; 47: 1261
    • 11b Wang Z. Fu N. Youji Huaxue 2011; 11: 1842
    • 11c Lamberth C. Kessabi FM. Beaudegnies R. Quaranta L. Trah S. Berthon G. Cederbaum F. Vettiger T. Prasann CS. Synlett 2014; 25: 858
    • 12a Pfitzinger W. J. Prakt. Chem. 1885; 33: 100
    • 12b Rineh A. Khalilzadeh MA. Hashemi MM. Rajabi M. Karimi F. J. Heterocycl. Chem. 2012; 49: 789
    • 12c Gök D. Kasımoğullar R. Cengiz M. Mert S. J. Heterocycl. Chem. 2014; 51: 224
    • 12d Sangshetti JN. Zambare AS. Shinde DB. Mini-Rev. Org. Chem. 2014; 11: 225
    • 13a West AP. Jr. Van Engen D. Paskal RA. Jr. J. Org. Chem. 1992; 57: 784
    • 13b Piechowska J. Gryko DT. J. Org. Chem. 2011; 76: 10220
    • 13c Xu X. Liu W. Wang Z. Feng Y. Yan Y. Zhang X. Tetrahedron Lett. 2016; 57: 226
  • 14 Senadi GC. Hu W.-P. Garkhedkar AM. Boominathan SS. K. Wang J.-J. Chem. Commun. 2015; 51: 13795
    • 15a Zheng J. Huang L. Huang C. Wu W. Jiang H. J. Org. Chem. 2015; 80: 1235
    • 15b Kong L. Zhou Y. Huang H. Yang Y. Liu Y. Li Y. J. Org. Chem. 2015; 80: 1275
    • 17a Chanda T. Verma RK. Singh MS. Chem. Asian J. 2012; 7: 778
    • 17b Koley S. Chanda T. Ramulu BJ. Chowdhury S. Singha MS. Adv. Synth. Catal. 2016; 358: 1195
  • 18 Luo L. Zhou Z. Zhu J. Lu X. Wang H. Tetrahedron Lett. 2016; 57: 4987
    • 19a Zhang Z.-J. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Org. Lett. 2013; 15: 4822
    • 19b Reddy LS. Reddy TR. Reddy NC. G. Mohan RB. Lingappa Y. Synthesis 2013; 45: 75
    • 19c Yu F.-C. Zhou B. Xu H. Chang K.-J. Shen Y. Tetrahedron Lett. 2015; 56: 837
    • 19d Wan J.-P. Cao S. Liu Y. J. Org. Chem. 2015; 80: 9028
    • 19e Wan J.-P. Zhou Y. Liu Y. Sheng S. Green Chem. 2016; 18: 402
    • 20a Tu S. Li C. Shi F. Zhou D. Shao Q. Cao L. Jiang B. Synthesis 2008; 369
    • 20b Wang H. Li L. Lin W. Xu P. Huang Z. Shi D. Org. Lett. 2012; 14: 4598
    • 20c Jiang B. Li Q.-Y. Tu S.-J. Li G. Org. Lett. 2012; 14: 5210
    • 20d Cao C.-P. Lin W. Hu M.-H. Huang Z.-B. Shi D.-Q. Chem. Commun. 2013; 49: 6983
    • 20e Yu F.-C. Hao X.-P. Lin X.-R. Yan S.-J. Lin J. Tetrahedron 2015; 71: 4084
    • 20f Yu F.-C. Zhou B. Xu H. Li Y.-M. Lin J. Yan S.-J. Shen Y. Tetrahedron 2015; 71: 1036
    • 20g Tang M. Zhao J.-J. Wu Q. Tu M.-S. Shi F. Synthesis 2017; 49: 2035
    • 21a Hogenkamp DJ. Johnstone TB. C. Huang J.-C. Li W.-Y. Tran M. Whittemore ER. Bagnera RE. Gee KW. J. Med. Chem. 2007; 50: 3369
    • 21b Yan S.-J. Huang C. Zeng X.-H. Huang R. Lin J. Bioorg. Med. Chem. Lett. 2010; 20: 48
    • 21c Ramana MV. R. Akula B. Cosenza SC. Lee C. Mallireddigari MR. Pallela VR. Venkata DR. C. S. Udofa A. Reddy EP. J. Med. Chem. 2012; 55: 5174
    • 22a Yu F. Yan S. Hu L. Wang Y. Lin J. Org. Lett. 2011; 13: 4782
    • 22b Xu H. Zhou P. Zhou B. Zhou J. Shen Y. Lu L.-L. Yu F.-C. RSC Adv. 2016; 6: 73760
    • 23a Yu F. Yan S. Huang R. Tang Y. Lin J. RSC Adv. 2011; 1: 596
    • 23b Yu F. Huang R. Ni H. Fan J. Yan S. Lin J. Green Chem. 2013; 15: 453
    • 23c Yu F. Chen Z. Hao X. Jiang X. Yan S. Lin J. RSC Adv. 2013; 3: 13183
    • 23d Yu F.-C. Hao X.-P. Jiang X.-Y. Yan S.-J. Lin J. Bull. Korean Chem. Soc. 2014; 35: 1625
    • 23e Lu L. Xu H. Zhou P. Yu F. Youji Huaxue 2016; 36: 2858
    • 23f Xu H. Zhou P. Huang R. Zhou J. Lu L.-L. Shen Y. Yu F.-C. Tetrahedron Lett. 2016; 57: 4965
    • 23g Yu F.-C. Lin X.-R. Liu Z.-C. Zhang J.-H. Liu F.-F. Wu W. Ma Y.-L. Qu W.-W. Yan S.-J. Lin J. ACS Omega 2017; 2: 873
  • 24 (2E)-3-[(2-Acetylphenyl)amino]-1-(4-methoxyphenyl)prop-2-en-1-one (3a); Typical Procedure 1-(2-Aminophenyl)ethanone (1a; 67.5 mg, 0.5 mmol), N,N-dimethylenaminone 2a (102.5 mg, 0.5 mmol), and p-TSA (86 mg, 0.5 mmol) were dissolved in H2O (5 mL), and the mixture was stirred at r.t. with ultrasound irradiation for 20 min until 2a was completely consumed. The mixture was then filtered to give a yellow solid; yield: 143 mg (97%); mp 131–133 °C; IR (KBr): 1632, 1597, 1543, 1452, 1400, 1297, 1236, 1163, 1024, 788, 755, 613 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.60 (s, 3 H, CH3), 3.77 (s, 3 H, ArOCH3), 6.03 (d, J = 8.0 Hz, 1 H, C–CH), 6.85 (d, J = 9.0 Hz, 2 H, ArH), 6.94–6.97 (m, 1 H, ArH), 7.25 (d, J = 8.0 Hz, 1 H, ArH), 7.38–7.42 (m, 2 H, ArH), 7.80 (d, J = 8.0 Hz, 1 H, N–CH), 7.96 (d, J = 8.5 Hz, 2 H, ArH), 13.69 (d, J = 12.0 Hz, 1 H, NH). 13C NMR (125 MHz, CDCl3): δ = 28.2, 55.4, 96.6, 113.5, 113.5, 114.0, 121.0, 122.4, 129.9, 129.9, 132.1, 132.2, 134.3, 140.5, 142.4, 162.5, 188.9, 200.0. HRMS (TOF ES+): m/z [M + H]+ calcd for C18H18NO3: 296.1281; found: 296.1285.
  • 25 (4-Methoxyphenyl)(4-methylquinolin-3-yl)methanone; Typical Procedure 1-(2-Aminophenyl)ethanone (1a; 67.5 mg, 0.5 mmol), N,N-dimethylenaminone 2a (102.5 mg, 0.5 mmol), and p-TSA (172 mg, 1.0 mmol) were dissolved in 4:1 (v/v) H2O–EtOH (5 mL), and the mixture was stirred at 100 °C, for 6.0 h until 2a was completely consumed. The mixture was cooled to r.t., neutralized to pH 8–9 with sat. aq Na2CO3, and extracted with EtOAc (2 × 30 mL). The combined organic phase was washed with H2O (20 mL), dried (Na2SO4), concentrated, and purified by flash column chromatography to give a yellow solid; yield: 129 mg (93%); mp 99–101 °C; IR (KBr): 1641, 1596, 1499, 1450, 1398, 1313, 1253, 1157, 926, 797, 705, 626 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.58 (s, 3 H, ArCH3), 3.81 (s, 3 H, ArOCH3), 6.87–6.89 (m, 2 H, ArH), 7.57–7.59 (m, 1 H, ArH), 7.72–7.76 (m, 3 H, ArH), 8.04 (d, J = 8.0 Hz, 1 H, ArH), 8.09 (d, J = 8.0 Hz, 1 H, ArH), 8.73 (s, 1 H, ArH). 13C NMR (125 MHz, CDCl3): δ = 15.8, 55.6, 114.8, 114.8, 124.4, 127.3, 127.7, 130.2, 130.2, 130.5, 132.4, 132.6, 132.6, 143.0, 147.9, 148.5, 164.3, 195.5. HRMS (TOF ES+): m/z [M + H]+ calcd for C18H16NO2: 278.1176; found: 278.1179.
  • 26 Wan L. Qiao K. Sun XN. Di Z. C. Fang Z. Lia ZJ. Guo K. New J. Chem. 2016; 40: 10227
    • 27a Albini A. Synthesis 1993; 263
    • 27b Balzarini J. Stevens M. De Clercq E. Schols D. Pannecouque C. J. Antimicrob. Chemother. 2005; 55: 135
    • 27c Stephens DE. Lakey-Beitia J. Burch JE. Armana HD. Larionov OV. Chem. Commun. 2016; 52: 9945
  • 28 Muthusaravanan S. Sasikumar C. Devi Bala B. Perumal S. Green Chem. 2014; 16: 1297
  • 29 Luo L. Meng L. Peng Y. Xing Y. Sun Q. Ge Z. Li R. Eur. J. Org. Chem. 2015; 631