Synthesis 2017; 49(21): 4808-4826
DOI: 10.1055/s-0036-1590878
short review
© Georg Thieme Verlag Stuttgart · New York

The Transient Directing Group Strategy: A New Trend in Transition-Metal-Catalyzed C–H Bond Functionalization

Qun Zhao
Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   eMail: tatiana.besset@insa-rouen.fr
,
Thomas Poisson
Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   eMail: tatiana.besset@insa-rouen.fr
,
Xavier Pannecoucke
Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   eMail: tatiana.besset@insa-rouen.fr
,
Tatiana Besset*
Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   eMail: tatiana.besset@insa-rouen.fr
› Institutsangaben
This work was partially supported by INSA Rouen, Rouen University, CNRS, EFRD, Labex SynOrg (ANR-11-LABX-0029) and Région Normandie­ (Crunch Network). Q. Z. thanks the CSC (China Scholarship Council) for a doctoral fellowship.
Weitere Informationen

Publikationsverlauf

Received: 12. Juli 2017

Accepted: 14. Juli 2017

Publikationsdatum:
23. August 2017 (online)


Abstract

In recent years, the C–H bond activation field has known very fast expansion offering valuable synthetic tools. Consequently, the quest for new approaches to afford atom- and step-economical processes has driven the scientific community to imagine original strategies. In this context, the direct functionalization of substrates by a transition-metal-catalyzed C–H bond activation using a transient directing group has emerged as a promising approach. This short review focuses on the major progress made in this field to provide to the reader an overview of the recent advances.

1 Introduction

2 From a Historical Point of View

3 Functionalization of Carbonyl Derivatives

4 Functionalization of Amines Derivatives

5 Summary and Outlook

 
  • References


    • For selected recent reviews and accounts, see:
    • 1a Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 1b Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1c Jazzar R. Hitce J. Renaudat A. Sofack-Kreutzer J. Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 1d Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 1e Li H. Lia BJ. Shi ZJ. Catal. Sci. Technol. 2011; 1: 191
    • 1f Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1g Zhao D. You J. Hu C. Chem. Eur. J. 2011; 17: 5466
    • 1h Colby DA. Tsai AS. Bergman RG. Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 1i Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 1j Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 1k Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 1l Zhang X.-S. Chen K. Shi Z.-J. Chem. Sci. 2014; 5: 2146
    • 1m Dastbaravardeh N. Christakakou M. Haider M. Schnuerch M. Synthesis 2014; 46: 1421
    • 1n Huang Z. Dong G. Tetrahedron Lett. 2014; 55: 5869
    • 1o Huang Z. Lim HN. Mo F. Young MC. Dong G. Chem. Soc. Rev. 2015; 44: 7764
    • 1p Song G. Li X. Acc. Chem. Res. 2015; 48: 1007
    • 1q Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 1r C–H Bond Activation and Catalytic Functionalization I . In Topics in Organometallic Chemistry . Vol 55. Dixneuf PH. Doucet H. Springer International; Switzerland: 2016
    • 1s C–H Bond Activation and Catalytic Functionalization II . In Topics in Organometallic Chemistry . Vol 56. Dixneuf PH. Doucet H. Springer International; Switzerland: 2016
    • 1t Yang X. Shan G. Wang L. Rao Y. Tetrahedron Lett. 2016; 57: 819
    • 1u Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 1v Dong Z. Ren Z. Thompson SJ. Xu Y. Dong G. Chem. Rev. 2017; 117: 9333
    • 1w He J. Wasa M. Chan KS. L. Shao Q. Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 1x Park Y. Kim Y. Chang S. Chem. Rev. 2017; 117: 9247

      For selected examples, see:
    • 2a Qiu Y. Gao S. Nat. Prod. Rep. 2016; 33: 562
    • 2b Cernak T. Dykstra KD. Tyagarajan S. Vachal PS. Krska W. Chem. Soc. Rev. 2016; 45: 546
    • 2c Bedell TA. Hone GA. B. Valette D. Yu J.-Q. Davies HM. L. Sorensen EJ. Angew. Chem. Int. Ed. 2016; 55: 8270
    • 2d Segawa Y. Maekawa T. Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 2e Dailler D. Danoun G. Ourri B. Baudoin O. Chem. Eur. J. 2015; 21: 9370
    • 2f Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 2g Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 2h Chen DY.-K. Youn SW. Chem. Eur. J. 2012; 18: 9452
    • 2i McMurray L. O’Hara F. Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 2j Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 3a Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 3b Zhu R.-Y. Farmer ME. Chen Y.-Q. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 3c Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 3d Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843
    • 3e Rousseau G. Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
    • 3f Zhang L. Fang D. Org. Chem. Front. 2017; 4: 1250
    • 3g Castro LC. M. Chatani N. Chem. Lett. 2015; 44: 410
    • 3h Corbet M. De Campo F. Angew. Chem. Int. Ed. 2013; 52: 9896

      For selected reviews regarding meta and para functionalization, see:
    • 4a Yu D.-G. de Azambuja F. Glorius F. Angew. Chem. Int. Ed. 2014; 53: 7710
    • 4b Juliá-Hernández F. Simonetti M. Larrosa I. Angew. Chem. Int. Ed. 2013; 52: 11458 ; and references therein
    • 4c Dey A. Maity S. Maiti D. Chem. Commun. 2016; 52: 12398

    • For selected examples of functionalization at the meta or para positions, see:
    • 4d Liang S. Bolte M. Manolikakes G. Chem. Eur. J. 2017; 23: 96
    • 4e Bera M. Agasti S. Chowdhury R. Mondal R. Pal D. Maiti D. Angew. Chem. Int. Ed. 2017; 56: 5272
    • 4f Dutta U. Modak A. Bhaskararao B. Bera M. Bag S. Mondal A. Lupton DW. Sunoj RB. Maiti D. ACS Catal. 2017; 7: 3162
    • 4g Modak A. Mondal A. Watile R. Mukherjee S. Maiti D. Chem. Commun. 2016; 52: 13916
    • 4h Bag S. Patra T. Modak A. Deb A. Maity S. Dutta U. Dey A. Kancherla R. Maji A. Hazra A. Bera M. Maiti D. J. Am. Chem. Soc. 2015; 137: 11888 ; and references cited therein
    • 4i Tang R.-Y. Li G. Yu J.-Q. Nature (London) 2014; 507: 215
    • 4j Cheng G.-J. Yang Y.-F. Liu P. Chen P. Sun T.-Y. Li G. Zhang X. Houk KN. Yu J.-Q. Wu Y.-D. J. Am. Chem. Soc. 2014; 136: 894
    • 4k Yang Y.-F. Cheng G.-J. Liu P. Leow D. Sun T.-Y. Chen P. Zhang X. Yu J.-Q. Wu Y.-D. Houk KN. J. Am. Chem. Soc. 2014; 136: 344
    • 4l Yang G. Lindovska P. Zhu D. Kim J. Wang P. Tang R.-Y. Movassaghi M. Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 10807
    • 4m Dai H.-X. Li G. Zhang X.-G. Stepan AF. Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567
    • 4n Lee S. Lee H. Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
    • 4o Chen B. Leow D. Li G. Mei T.-S. Yu J.-Q. Nature (London) 2012; 486: 518
    • 4p Hou XL. Li YX. Wu YD. J. Am. Chem. Soc. 2011; 133: 7668
    • 4q Phipps RJ. Gaunt MJ. Science (Washington, D. C.) 2009; 323: 1593

      For selected accounts for remote C–H activation:
    • 5a Schranck J. Tlili A. Beller M. Angew. Chem. Int. Ed. 2014; 53: 9426
    • 5b Yang J. Org. Biomol. Chem. 2015; 13: 1930
    • 5c Ackermann L. Li J. Nat. Chem. 2015; 7: 686
    • 5d Davis HJ. Phipps RJ. Chem. Sci. 2017; 8: 864
    • 5e Dydio P. Reek JN. H. Chem. Sci. 2014; 5: 2135

    • For selected examples on remote C–H bond functionalization on C(sp3) centers, see:
    • 5f Aspin S. Goutierre A.-S. Larini P. Jazzar R. Baudoin O. Angew. Chem. Int. Ed. 2012; 51: 10808
    • 5g Das S. Incarvito CD. Crabtree RH. Brudvig GW. Science (Washington, D. C.) 2006; 312: 1941

      For selected examples, see:
    • 6a Bhadra S. Dzik W. Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 2959
    • 6b Kumar NY. P. Bechtoldt A. Raghuvanshi K. Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 6929
    • 6c Luo J. Preciado S. Larrosa I. J. Am. Chem. Soc. 2014; 136: 4109
    • 6d Qin X. Sun D. You Q. Cheng Y. Lan J. You J. Org. Lett. 2015; 17: 1762
    • 6e Maiti D. Agasti S. Dey A. Chem. Commun. 2016; 52: 12191
    • 6f Biafora A. Khan BA. Bahri J. Hewer JM. Goossen LJ. Org. Lett. 2017; 19: 1232

      For an account, see:
    • 7a Della CaN. Fontana M. Motti E. Catellani M. Acc. Chem. Res. 2016; 49: 1389

    • For selected examples, see:
    • 7b Wang X.-C. Gong W. Fang L.-Z. Zhu R.-Y. Li S. Engle KM. Yu J.-Q. Nature (London) 2015; 519: 334
    • 7c Wang P. Farmer ME. Huo X. Jain P. Shen P.-X. Ishoey M. Bradner JE. Wisniewski SR. Eastgate MD. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 9269 ; and references therein
    • 7d Chen S. Yu J. Jiang Y. Chen F. Cheng J. Org. Lett. 2013; 15: 4754
    • 7e Dong Z. Dong G. J. Am. Chem. Soc. 2013; 135: 18350
    • 8a Li Q. Knight BJ. Ferreira EM. Chem. Eur. J. 2016; 22: 13054
    • 8b Wang Z. Reinus BJ. Dong G. J. Am. Chem. Soc. 2012; 134: 13954
  • 9 Bisht R. Chattopadhyay B. J. Am. Chem. Soc. 2016; 138: 84

    • For selected reviews, see:
    • 10a Park YJ. Park J.-W. Jun C.-H. Acc. Chem. Res. 2008; 41: 222
    • 10b Shao Z. Zhang H. Chem. Soc. Rev. 2009; 38: 2745
    • 10c Zhong C. Shi X. Eur. J. Org. Chem. 2010; 2999

      For selected examples, see:
    • 11a Jun C.-H. Lee H. Hong J.-B. J. Org. Chem. 1997; 62: 1200
    • 11b Bedford RB. Coles SJ. Hursthouse MB. Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 11c Bedford RB. Limmert ME. J. Org. Chem. 2003; 68: 8669

      For recent reviews, see:
    • 12a Qin Y. Zhu L. Luo S. Chem. Rev. 2017; 117: 9433
    • 12b Kim D.-S. Park W.-J. Jun C.-H. Chem. Rev. 2017; 117: 8977
    • 12c Afewerki S. Córdova A. Chem. Rev. 2016; 116: 13512
    • 12d Du Z. Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 12e Sun H. Guimond N. Huang Y. Org. Biomol. Chem. 2016; 14: 8389
  • 13 Beletskiy EV. Sudheer C. Douglas CJ. J. Org. Chem. 2012; 77: 5884
    • 14a Lewis LN. Inorg. Chem. 1985; 24: 4433
    • 14b Lewis LN. Smith JF. J. Am. Chem. Soc. 1986; 108: 2728
  • 15 Kuninobu Y. Matsuki T. Takai K. Org. Lett. 2010; 12: 2948
  • 16 Tan PW. Juwaini NA. B. Seayad J. Org. Lett. 2013; 15: 5166
  • 17 Zhang F.-L. Hong K. Li T.-J. Park H. Yu J.-Q. Science (Washington, D. C.) 2016; 351: 252
  • 18 Ma F. Lei M. Hu L. Org. Lett. 2016; 18: 2708
  • 19 Yang K. Li Q. Liu Y. Li G. Ge H. J. Am. Chem. Soc. 2016; 138: 12775
  • 20 Zhang Y.-F. Wu B. Shi Z.-J. Chem. Eur. J. 2016; 22: 17808
  • 21 Mu D. Wang X. Chen G. He G. J. Org. Chem. 2017; 82: 4497
  • 22 Liu X.-H. Park H. Hu J.-H. Hu Y. Zhang Q.-L. Wang B.-L. Sun B. Yeung K.-S. Zhang F.-L. Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 888
  • 23 Chen X.-Y. Ozturk S. Sorensen EJ. Org. Lett. 2017; 19: 1140
  • 24 Mo F. Dong G. Science (Washington, D. C.) 2014; 345: 68
  • 25 Lim HN. Dong G. Angew. Chem. Int. Ed. 2015; 54: 15294
  • 26 Mo F. Lim HN. Dong G. J. Am. Chem. Soc. 2015; 137: 15518
  • 27 Xu J. Liu Y. Wang Y. Li Y. Xu X. Jin Z. Org. Lett. 2017; 19: 1562
    • 28a Spangler JE. Kobayashi Y. Verma P. Wang D.-H. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11876
    • 28b Smalley AP. Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632
    • 28c Jain P. Verma P. Xia G. Yu J.-Q. Nat. Chem. 2016; 8: 140
    • 28d Topczewski JJ. Cabrera PJ. Saper NI. Sanford MS. Nature (London) 2016; 531: 220
    • 28e Lee M. Sanford MS. Org. Lett. 2017; 19: 572
    • 28f Willcox D. Chappell BG. N. Hogg KF. Calleja J. Smalley AP. Gaunt MJ. Science (Washington, D. C.) 2016; 354: 851
  • 29 Yada A. Liao W. Sato Y. Murakami M. Angew. Chem. Int. Ed. 2016; 56: 1073
  • 30 Xu Y. Young MC. Wang C. Magness DM. Dong G. Angew. Chem. Int. Ed. 2016; 55: 9084
  • 31 Liu Y. Ge H. Nat. Chem. 2017; 9: 26
  • 32 Wu Y. Chen Y.-Q. Liu T. Eastgate MD. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14554