Synthesis 2017; 49(15): 3453-3459
DOI: 10.1055/s-0036-1590839
paper
© Georg Thieme Verlag Stuttgart · New York

Superelectrophilicity in Michael-Type Reactions: Water Addition to 4-Nitrobenzodifuroxan

Sami Lakhdar*
a   Normandie Université, Laboratoire de Chimie Moléculaire et Thio-organique, CNRS-UMR 6507, ENSICAEN, Université de Caen Normandie, 6, Boulevard du Maréchal Juin, Caen 14000, France   Email: Sami.lakhdar@ensicaen.fr
,
b   Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: Guillaume.berionni@cup.lmu.de
,
François Terrier*
c   Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-St-Quentin, 45, Avenue des Etats-Unis, 78035 Cedex Versailles, France   Email: Terrier@chimie.uvsq.fr
› Author Affiliations
The authors are grateful to the CNRS and the University of Versailles for funding this research.
Further Information

Publication History

Received: 31 May 2017

Accepted after revision: 26 June 2017

Publication Date:
11 July 2017 (online)


Dedicated to Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

Kinetic and thermodynamic measurements of the ease of covalent hydration of 4-nitrobenzodifuroxan (NBDF) to give the corresponding hydroxy adduct has been carried out over a large pH range of 0.82–12.23 in aqueous solution. A most important result is that water is the sole efficient nucleophile contributing to the hydration of this peculiar nitroolefin in the pH range 4–8. Based on this finding as well as a pK a H2O value of 2.85 for the complexation process there is no doubt that the electrophilic character of NBDF falls in the domain of superelectrophilicity defined with reference to covalent nucleophilic additions to 4,6-dinitrobenzofuroxan (DNBF; pK a H2O = 3.75) and related heterocycles. This also corresponds to a positioning of NBDF at the top of the electrophilicity scale E introduced by Mayr to describe the feasibility of nucleophilic-electrophilic combinations. Returning to the hydration of the series of activated olefins, it has been possible to expand the domain of reactivity of Michael acceptors by six orders of magnitude, going from benzylidenemalonitrile (pK a H2O = 10.70; E = –9.42) to the para-nitro-substituted benzylidene Meldrum’ s acid (pK a H2O = 3.46; E = –5.49). The positioning of these olefins on the pK a scale shows that not only 4-nitrobenzodifuroxan but also the unsubstituted Meldrum’s acid are located in the superelectrophilic region.

 
  • References

    • 1a Mayr H. Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938
    • 1b Mayr H. Ofial AR. Pure Appl. Chem. 2005; 77: 1807
    • 1c Minegishi S. Kobayashi S. Mayr H. J. Am. Chem. Soc. 2004; 126: 5174
  • 2 Mayr H. Kempf B. Ofial AR. Acc. Chem. Res. 2003; 36: 66
    • 3a Mayr H. Bug T. Gotta MF. Hering N. Irrgang B. Janker B. Kempf B. Loos R. Ofial AR. Remmenikov G. Schimmel H. J. Am. Chem. Soc. 2001; 123: 9500
    • 3b Phan TB. Breugst M. Mayr H. Angew. Chem. Int. Ed. 2006; 45: 3869
    • 4a Ofial AR. Ohkubo K. Fukuzumi S. Lucius R. Mayr H. J. Am. Chem. Soc. 2003; 125: 10906
    • 4b Lemek T. Mayr H. J. Org. Chem. 2003; 68: 6880
    • 4c Kempf B. Hampel N. Ofial AR. Mayr H. Chem. Eur. J. 2003; 9: 2209
    • 5a Lucius R. Loos R. Mayr H. Angew. Chem. Int. Ed. 2002; 41: 92
    • 5b Mayr H. Ofial AR. Pure Appl. Chem. 2005; 77: 1807
    • 5c Lewis FD. Liu X. Miller SE. Hayes RT. Wasielewski MR. J. Am. Chem. Soc. 2002; 124: 11280
    • 5d Mayr H. Fichtner C. Ofial AR. J. Chem. Soc., Perkin Trans. 2 2002; 1435
    • 6a Kuhn O. Rau D. Mayr H. J. Am. Chem. Soc. 1998; 120: 900
    • 6b Würthwein E.-U. Lang G. Schappele LH. Mayr H. J. Am. Chem. Soc. 2002; 124: 4084
    • 8a Allgäuer DS. Mayr H. Eur. J. Org. Chem. 2014; 2956
    • 8b Allgäuer DS. Mayr H. J. Am. Chem. Soc. 2013; 135: 15216
    • 8c Zenz I. Mayr H. J. Org. Chem. 2011; 76: 9370
    • 9a Kaumanns O. Lucius R. Mayr H. Chem. Eur. J. 2008; 14: 9675
    • 9b Asahara H. Mayr H. Chem. Asian. J. 2012; 7: 1401
  • 10 Chen Q. Mayer P. Mayr H. Angew. Chem. Int. Ed. 2016; 55: 12664
  • 11 Krutak JJ. Burpitt RD. Moore WH. Hyatt JA. J. Org. Chem. 1979; 44: 3847
  • 12 Dong J. Krasnova L. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 13a Terrier F. Nucleophilic Aromatic Displacement: The Influence of the Nitro Group. VCH; Weinheim: 1991
    • 13b Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
    • 14a Terrier F. Millot F. Norris WP. J. Am. Chem. Soc. 1976; 98: 5883
    • 14b Terrier F. Chatrousse AP. Soudais Y. Hlaibi M. J. Org. Chem. 1984; 49: 4176
    • 14c Goumont, R.; Jan, E.; Mąkosza, M.; Terrier, F. Org. Biomol. Chem. 2003, 1, 2192.
    • 15a Terrier F. Kizilian E. Hallé JC. Buncel E. J. Am. Chem. Soc. 1992; 114: 1740
    • 15b Terrier F. Pouet MJ. Hallé JC. Hunt S. Jones JR. Buncel E. J. Chem. Soc., Perkin Trans. 2 1993; 1665
    • 15c Terrier F. Goumont R. Pouet M-J. Hallé J-C. J. Chem. Soc., Perkin Trans. 2 1995; 1629
    • 15d Halle JC. Pouet MJ. Simonnin MP. Terrier F. Tetrahedron Lett. 1985; 25: 1307
    • 16a Boubaker T. Goumont R. Jan E. Terrier F. Org. Biomol. Chem. 2003; 1: 2764
    • 16b Boubaker T. Chatrousse AP. Terrier F. Tangour B. Dust JM. Buncel E. J. Chem. Soc., Perkin Trans. 2 2002; 1627
    • 16c Mokhtari M. Goumont R. Hall JC. Terrier F. ARKIVOC 2002; (xi): 168
    • 17a Buncel E. Renfrow RA. Strauss MJ. J. Org. Chem. 1987; 52: 488
    • 17b Manderville RA. Buncel E.  J. Chem. Soc., Perkin Trans. 2 1993; 1887
    • 18a Crampton MR. Rabbitt LC. Terrier F. Can. J. Chem. 1999; 77: 639
    • 18b Crampton MR. Lunn RE. A. Lucas D. Org. Biomol. Chem. 2003; 1: 3438
  • 19 Bernasconi CF. J. Am. Chem. Soc. 1970; 92: 4682
    • 20a Terrier F. Pouet MJ. Halle JC. Kizilian E. Buncel E. J. Phys. Org. Chem. 1998; 11: 707
    • 20b Kizilian E. Terrier F. Chatrousse AP. Gzouli K. Hallé JC. J. Chem. Soc., Perkin Trans. 2 1997; 2667
    • 20c Terrier F. Simonnin MP. Pouet MJ. Strauss MJ. J. Org. Chem. 1981; 46: 3537
    • 21a Boga C. Del Vecchio E. Forlani L. Goumont R. Terrier F. Tozzi S. Chem. Eur. J. 2007; 13: 9600
    • 21b Jin P. Li F. Riley K. Lenoir D. Schleyer P. vR. Chen Z. J. Org. Chem. 2010; 75: 3761
    • 21c Forlani L. Tocke AL. Del Vecchio E. Lakhdar S. Goumont R. Terrier F. J. Org. Chem. 2006; 71: 5527
    • 22a Terrier F. Halle J.-C. Pouet M.-J. Simonnin M.-P. J. Org. Chem. 1986; 51: 409
    • 22b Terrier F. Pouet MJ. Kizilian E. Hallé JC. Outurquin F. Paulmier C. J. Org. Chem. 1993; 58: 4696
    • 23a Terrier F. Lakhdar S. Boubaker T. Goumont R. J. Org. Chem. 2005; 70: 6242
    • 23b Lakhdar S. Westermaier M. Terrier F. Goumont R. Boubaker T. Ofial AR. Mayr H. J. Org. Chem. 2006; 71: 9088
    • 24a Kurbatov S. Goumont R. Marrot J. Terrier F. Tetrahedron. Lett. 2004; 45: 1037
    • 24b Kurbatov S. Goumont R. Lakhdar S. Marrot J. Terrier F. Tetrahedron 2005; 61: 8167
    • 24c Steglenko DV. Kletsky ME. Kurbatov SV. Tatarov AV. Minkin VI. Goumont R. Terrier F. J. Phys. Org. Chem. 2009; 22: 298
    • 25a Lakhdar S. Goumont R. Berionni G. Boubaker T. Kurbatov S. Terrier F. Chem. Eur. J. 2007; 13: 8317
    • 25b Steglenko DV. Kletsky ME. Kurbatov SV. Tatarov AV. Minkin VI. Goumont R. Terrier F. Chem. Eur. J. 2011; 17: 7592
  • 26 Berionni G. Bertelle PA. Marrot J. Goumont R. J. Am. Chem. Soc. 2009; 131: 18224
    • 27a Lakhdar S. Goumont R. Boubaker T. Mokhtari M. Terrier F. Org. Biomol. Chem. 2006; 4: 1910
    • 27b Lakhdar S. Goumont R. Terrier F. Boubaker T. Dust JM. Buncel E. Org. Biomol. Chem. 2007; 5: 1744
    • 28a Bunting JW. Stefanidis D. J. Org. Chem. 1986; 51: 2060
    • 28b Bunting JW. Norris DJ. J. Am. Chem. Soc. 1977; 99: 1189
  • 29 Bunting JW. Adv. Heterocyl. Chem. 1979; 25: 1
  • 30 Terrier F. Sebban M. Goumont R. Hallé JC. Moutiers G. Cangelosi I. Buncel E. J. Org. Chem. 2000; 65: 7391
    • 31a Kurbatov S. Lakhdar S. Goumont R. Terrier F. Org. Prep. Proced. Int. 2012; 44: 289
    • 31b Terrier F. Dust JM. Buncel E. Tetrahedron 2012; 68: 1829
    • 31c Buncel E. Terrier F. Org. Biomol. Chem. 2010; 8: 2285
  • 32 Chen Q. Mayer P. Mayr H. Angew. Chem. Int. Ed. 2016; 55: 12664
  • 33 Bernasconi CF. Tetrahedron 1989; 45: 4017
    • 34a Bernasconi CF. Howard KA. Kanavarioti A. J. Am. Chem. Soc. 1984; 106: 6827
    • 34b Bernasconi CF. Fox JP. Kanavarioti A. Panda M. J. Am. Chem. Soc. 1984; 108: 2372
    • 34c Bernasconi CF. Laibelman A. Zitomer A. J. Am. Chem. Soc. 1985; 107: 6563
    • 35a Bernasconi CF. Carré DJ. Kanavarioti A. J. Am. Chem. Soc. 1981; 103: 4850
    • 35b Bernasconi CF. Leonarduzzi GD. J. Am. Chem. Soc. 1980; 102: 1361
    • 35c Bernasconi CF. Stronach MW. J. Org. Chem. 1986; 51: 2144
  • 36 Bailey AR. Case JR. Tetrahedron 1958; 3: 113