Synthesis 2017; 49(15): 3495-3504
DOI: 10.1055/s-0036-1590504
paper
© Georg Thieme Verlag Stuttgart · New York

Nucleophilicities and Lewis Basicities of Sterically Hindered Pyridines

Elsa Follet
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: guillaume.berionni@cup.uni-muenchen.de
,
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: guillaume.berionni@cup.uni-muenchen.de
,
Sami Lakhdar
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: guillaume.berionni@cup.uni-muenchen.de
,
Armin R. Ofial
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: guillaume.berionni@cup.uni-muenchen.de
,
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: guillaume.berionni@cup.uni-muenchen.de
› Author Affiliations
This work has been funded by the Deutsche Forschungsgemeinschaft (SFB 749, projects B1 and C6).
Further Information

Publication History

Received: 05 May 2017

Accepted: 07 May 2017

Publication Date:
12 June 2017 (online)


Dedicated to Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

The structures of the covalent Lewis adducts and/or frustrated Lewis pairs derived from 2- and 2,6-substituted pyridines with diaryl (Ar2CH+) and with the more bulky triaryl (Ar3C+) carbenium ions were analyzed by UV-vis and NMR spectroscopy. Thermodynamics (equilibrium constants) and kinetics (rate constants) of the associations of the carbon-centered Lewis acids Ar2CH+ with a series of sterically hindered pyridines were investigated and used for the determination of the Lewis basicities and nucleophilicities, on the basis of the Mayr electrophilicity/nucleophilicity and Lewis acidity/basicity linear free energy relationships. In addition, methyl and benzhydryl cation affinities were computed to elucidate the respective steric and electronic contributions of the substituents to the nitrogen atom Lewis basicity. The influence of the size of the reference carbenium ion on the magnitude of the repulsion induced by the pyridine substituents (Me, tBu in 2- or 2,6-positions) was also analyzed. Cumulated steric repulsion was found to decrease the reactivity of the nitrogen atom by up to 10 orders of magnitude.

Supporting Information

 
  • References

    • 1a Rycke ND. Couty F. David OR. P. Chem. Eur. J. 2011; 17: 12852
    • 1b Spivey AC. Arseniyadis S. Angew. Chem. Int. Ed. 2014; 43: 5436
    • 2a Kaljurand I. Rodima T. Leito I. Koppel IA. Schwesinger R. J. Org. Chem. 2000; 65: 6202
    • 2b Gyor M. Wang HC. Faust R. J. Macromol. Sci., Part A: Pure Appl. Chem. 1992; 29: 639
    • 3a Kwong H.-L. Yeung H.-L. Yeung C.-T. Lee W.-S. Lee C.-S. Wong W.-L. Coord. Chem. Rev. 2007; 251: 2188
    • 3b Zafar MN. Atif AH. Nazar MF. Sumrra SH. Gul-E-Saba, Paracha R. Russ. J. Coord. Chem. 2016; 42: 1
    • 4a Lakhdar S. Quantitative Treatments of Nucleophilicity and Carbon Lewis Basicity. In Lewis Base Catalysis in Organic Synthesis. Vedejs E. Denmark S. Wiley-VCH; Weinheim: 2016. Chap. 4
    • 4b De Rycke N. Berionni G. Couty F. Mayr H. Goumont R. David OR. P. Org. Lett. 2011; 13: 530
    • 4c Baidya M. Horn M. Zipse H. Mayr H. J. Org. Chem. 2009; 74: 7157
    • 4d Brotzel F. Kempf B. Singer T. Zipse H. Mayr H. Chem. Eur. J. 2007; 13: 336
    • 4e Baidya M. Kobayashi S. Brotzel F. Schmidhammer U. Riedle E. Mayr H. Angew. Chem. Int. Ed. 2007; 46: 6176
    • 4f Mayr H. Ofial AR. Acc. Chem. Res. 2016; 49: 952
    • 4g Mayr H. Ofial AR. Pure Appl. Chem. 2017; DOI: 10.1515/pac-2017-0107.
    • 5a Mayr H. Ammer J. Baidya M. Maji B. Nigst TA. Ofial AR. Singer T. J. Am. Chem. Soc. 2015; 137: 2580
    • 5b Follet E. Mayer P. Mayr H. Eur. J. Org. Chem. 2016; 4050
    • 5c Follet E. Mayer P. Berionni G. Chem. Eur. J. 2017; 23: 623
    • 7a Brown HC. Boranes in Organic Chemistry . Cornell University Press; Ithaca: 1973: 99-100
    • 7b Odiaka TI. Kane-Maguire LA. P. J. Chem. Soc., Dalton Trans. 1981; 1162
    • 7c Odiaka TI. J. Organomet. Chem. 1988; 345: 135
    • 7d Kim CB. Leffek KT. Can. J. Chem. 1975; 53: 3408
    • 7e Reiststöen B. Parker VD. J. Am. Chem. Soc. 1991; 113: 6954
    • 7f Ghazy T. Kane-Maguire LA. P. J. Organomet. Chem. 1988; 338: 47
    • 8a Brown HC. Gintis D. Domash L. J. Am. Chem. Soc. 1956; 78: 5387
    • 8b Brown HC. Schlesinger HI. Cardon SZ. J. Am. Chem. Soc. 1942; 64: 325
    • 8c Brown HC. Kanner B. J. Am. Chem. Soc. 1966; 88: 986
    • 8d Bell TW. Hu L.-Y. Patel SV. J. Org. Chem. 1987; 52: 3847
    • 8e For extended BF3 affinity scales for a large number of Lewis bases, see: Gal JF. Thermodynamic Treatments of Lewis Basicity. In Lewis Base Catalysis in Organic Synthesis. Vedejs E. Denmark S. Wiley-VCH; Weinheim: 2016. Chap. 3
  • 9 Karkamkar A. Parab K. Camaioni DM. Neiner D. Cho HM. Nielsen TK. Autrey T. Dalton Trans. 2013; 42: 615
    • 10a Arnett EM. Venimadhavan S. J. Org. Chem. 1991; 56: 2742
    • 10b Giese G. Heesing A. Chem. Ber. 1990; 123: 2373
    • 10c For further studies on the associations of pyridines with carbenium ions, see: Chapman S. Kane-Maguire LA. P. Kanitz R. J. Organomet. Chem. 1987; 329: C11

      For recent reviews on frustrated Lewis pairs, see:
    • 11a Stephan DW. Science 2016; 354 DOI: 10.1126/science.aaf7229.
    • 11b Stephan DW. Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
    • 11c Frustrated Lewis Pairs II: Expanding the Scope . Erker G. Stephan DW. Springer; Berlin: 2013
    • 11d For FLPs derived from bulky pyridines, see: Welch GC. Stephan DW. J. Am. Chem. Soc. 2007; 129: 1880
    • 11e For quantitative studies on the reactivities of sterically hindered pyridines, see: Jiang CF. Blacque O. Fox T. Berke H. Organometallics 2011; 30: 2117
    • 11f Geier SJ. Gille AL. Gilbert TM. Stephan DW. Inorg. Chem. 2009; 48: 10466
    • 11g Denmark SE. Ueki Y. Organometallics 2013; 32: 6631
    • 12a Wei Y. Singer T. Mayr H. Sastry GN. Zipse H. J. Comput. Chem. 2008; 29: 291
    • 12b Wei Y. Sastry GN. Zipse H. J. Am. Chem. Soc. 2008; 130: 3473
    • 12c Wei Y. Sastry GN. Zipse H. Org. Lett. 2008; 10: 5413
    • 12d Lindner C. Maryasin B. Richter F. Zipse H. J. Phys. Org. Chem. 2010; 23: 1036
  • 13 Lindner C. Tandon R. Maryasin B. Larionov E. Zipse H. Beilstein J. Org. Chem. 2012; 8: 1406
    • 14a Maji B. Breugst M. Mayr H. Angew. Chem. Int. Ed. 2011; 50: 6915
    • 14b Levens A. An F. Breugst M. Mayr H. Lupton DW. Org. Lett. 2016; 18: 3566
  • 16 Kane-Maguire LA. P. J. Organomet. Chem. 1987; 329: C11
  • 17 This effect was previously described for other carbenium ions; see refs. 7e,f.

    • We reported that 2,6-di-tert-butylpyridine (8) can be used as a proton sponge in Friedel–Crafts reactions without reacting with the benzhydrylium ion 11a:
    • 18a Herrlich M. Hampel N. Mayr H. Org. Lett. 2001; 3: 1629
    • 18b Herrlich M. Mayr H. Faust R. Org. Lett. 2001; 3: 1633
    • 18c For the reactivities of tritylium ions, see: Ofial AR. Pure Appl. Chem. 2015; 87: 341
    • 18d Horn M. Mayr H. J. Phys. Org. Chem. 2012; 25: 979
    • 18e Minegishi S. Mayr H. J. Am. Chem. Soc. 2003; 125: 286
  • 19 Schmider HL. Becke AD. J. Chem. Phys. 1998; 108: 9624
    • 20a Hehre WJ. Ditchfield R. Pople JA. J. Chem. Phys. 1972; 56: 2257
    • 20b Hariharan PC. Pople JA. Theor. Chim. Acta 1973; 28: 213
    • 20c Spitznagel GW. Clark T. Chandrasekhar J. Schleyer P. vR. J. Comput. Chem. 1982; 3: 363
  • 21 Boys SF. Bernardi F. Mol. Phys. 1970; 19: 553
  • 22 For seminal work on the halenium affinity scales of Lewis bases, see: Ashtekar KD. Marzijarani NS. Jaganathan A. Holmes D. Jackson JE. Borhan B. J. Am. Chem. Soc. 2014; 136: 13355
  • 23 No linear correlation between the pK a values of pyridines 110 and their Lewis basicities LB was observed, because of the large differences in the sizes and structures of H+ and Ar2CH+ acids. For the pK a values of 110, see ref. 8.
    • 24a Cabrera L. Welch GC. Masuda JD. Wei P. Stephan DW. Inorg. Chim. Acta 2006; 359: 3066
    • 24b Bidan G. Cauquis G. Genies M. Tetrahedron Lett. 1979; 35: 177
    • 24c Okamoto Y. Shimakaya Y. J. Org. Chem. 1970; 35: 3752
    • 25a Huang Y. Qiu C. Li Z. Feng W. Gan H. Liu J. Guo K. ACS Sustainable Chem. Eng. 2016; 4: 47
    • 25b Lv J. Zhang Q. Zhong X. Luo S. J. Am. Chem. Soc. 2015; 137: 15576
    • 25c Bah J. Franzén J. Chem. Eur. J. 2014; 20: 1066
  • 26 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalmani G. Barone V. Mennucci B. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JA. Jr. Peralta JE. Ogliaro F. Bearpark M. Heyd JJ. Brothers E. Kudin KN. Staroverov VN. Keith T. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam JM. Klene M. Knox JE. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GA. Salvador P. Dannenberg JJ. Dapprich S. Daniels AD. Farkas O. Foresman JB. Ortiz JV. Cioslowski J. Fox DJ. Gaussian 09, Revision D.01. Gaussian Inc; Wallingford CT: 2013