Synthesis 2018; 50(15): 2954-2967
DOI: 10.1055/s-0036-1589541
special topic
© Georg Thieme Verlag Stuttgart · New York

Cascade Radical Cyclization to Vinylogous Carbonates/Carbamates for the Synthesis of Oxa- and Aza-Angular Triquinanes: Diastereoselectivity Depends on the Ring Size of Radical Precursor

Santosh J. Gharpure*
a  Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India   Email: sjgharpure@iitb.ac.in
,
P. Niranjana
b  Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
,
Suheel K. Porwal
c  Department of Chemistry, DIT University, Dehradun, Dehradun 248009, India
› Author Affiliations
We thank SERB, New Delhi, for financial support.
Further Information

Publication History

Received: 10 June 2018

Accepted after revision: 03 July 2018

Publication Date:
11 July 2018 (eFirst)

Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Dedicated to Professor Sambasivarao Kotha, IIT Bombay, on the occasion of his 60th birthday.

Abstract

An efficient strategy was developed for the stereoselective construction of oxa- and aza-angular triquinanes employing a cascade 5-exo-trig radical cyclization to vinylogous carbonates and carbamates. The radical precursors are readily prepared from 2-(hydroxymethyl)cyclopentenone/cyclohexenones. High diastereoselectivity is observed for the formation of angular oxa- and azatriquinanes. Diastereoselectivity drops when six-membered radical precursors are used. The strategy is found to be useful to incorporate synthetically challenging moieties such as spiroindoline, lactone-bearing, and uracil-fused angular triquinanes in a concise manner.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Mehta G. Srikrishna A. Chem. Rev. 1997; 97: 671
    • 1b Singh V. Thomas B. Tetrahedron 1998; 54: 3647
    • 1c Marchand AP. Synlett 1991; 73

      Selected examples: Oxatriquinanes:
    • 2a Yadav JS. Kumar PT. K. Gadgil VR. Tetrahedron Lett. 1992; 33: 3687
    • 2b Woltering TJ. Hoffmann HM. R. Tetrahedron 1995; 51: 7389
    • 2c Singh V. Alam SQ. Bioorg. Med. Chem. Lett. 2000; 10: 2517
    • 2d Ader TA. Champey CA. Kuznetsova LV. Li T. Lim Y.-H. Rucando D. Sieburth SM. Org. Lett. 2001; 3: 2165
    • 2e Gurjar MK. Ravindranadh SV. Kumar P. Chem. Commun. 2001; 917
    • 2f Singh V. Alam SQ. Praveena GD. Tetrahedron 2002; 58: 9729
    • 2g Kaliappan KP. Nandurdikar RS. Chem. Commun. 2004; 2506
    • 2h Kaliappan KP. Nandurdikar RS. Shaikh MM. Tetrahedron 2006; 62: 5064
    • 2i Ramakrishna K. Kaliappan KP. Synlett 2011; 2580
    • 2j Liao J.-H. Maulide N. Augustyns B. Marko IE. Org. Biomol. Chem. 2006; 4: 1464
    • 2k Mascal M. Hafezi N. Meher NK. Fettinger JC. J. Am. Chem. Soc. 2008; 130: 13532

    • Azatriquinanes:
    • 2l Clive DL. J. Cole DC. Tao Y. J. Org. Chem. 1994; 59: 1396
    • 2m Hext NM. Hansen J. Blake AJ. Hibbs DE. Hursthouse MB. Shishkin OV. Mascal M. J. Org. Chem. 1998; 63: 6016
    • 2n Li Y. Meng Y. Meng X. Li Z. Tetrahedron 2011; 67: 4002
    • 2o Zancanella MA. Romo D. Org. Lett. 2008; 10: 3685
    • 2p Kudryavtsev KV. Heterocycles 2011; 83: 323
    • 2q Bandaru A. Kaliappan KP. Synlett 2012; 23: 1473
    • 2r An J. Lu L.-Q. Yang Q.-Q. Wang T. Xiao W-J. Org. Lett. 2013; 15: 542
    • 2s Kotha S. Aswar VR. Org. Lett. 2016; 18: 1808
    • 3a Huang J.-M. Yokoyama R. Yang C.-S. Fukuyama Y. Tetrahedron Lett. 2000; 41: 6111
    • 3b Huang J.-M. Yang C.-S. Tanaka M. Fukuyama Y. Tetrahedron 2001; 57: 4691
    • 3c Thaharn W. Soorukram D. Kuhakarn C. Tuchinda P. Reutrakul V. Pohmakotr M. Angew. Chem. Int. Ed. 2014; 53: 2212
    • 4a Gharpure SJ. Reddy SR. B. Org. Lett. 2009; 11: 2519
    • 4b Gharpure SJ. Shukla MK. Vijayasree U. Org. Lett. 2009; 11: 5466
    • 4c Gharpure SJ. Reddy SR. B. Tetrahedron Lett. 2010; 51: 6093
    • 4d Gharpure SJ. Sathiyanarayanan AM. Chem. Commun. 2011; 47: 3625
    • 4e Gharpure SJ. Nanda LN. Shukla MK. Eur. J. Org. Chem. 2011; 6632
    • 4f Gharpure SJ. Prasath V. J. Chem. Sci. (Berlin, Ger.) 2011; 123: 943
    • 4g Gharpure SJ. Vijayasree U. Reddy SR. B. Org. Biomol. Chem. 2012; 10: 1735
    • 4h Gharpure SJ. Porwal SK. Synlett 2008; 242
    • 4i Gharpure SJ. Porwal SK. Tetrahedron Lett. 2009; 50: 7162
    • 4j Gharpure SJ. Niranjana P. Porwal SK. Org. Lett. 2012; 14: 5476
    • 4k Gharpure SJ. Prasath V. Kumar V. Chem. Commun. 2015; 51: 13623
  • 5 Guerra KP. Afonso CA. M. Tetrahedron 2011; 67: 2562

    • Reviews:
    • 6a Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev. 2003; 103: 811
    • 6b Basavaiah D. Rao PD. Hyma RS. Tetrahedron 1996; 52: 8001
    • 7a Luche JL. J. Am. Chem. Soc. 1978; 100: 2226
    • 7b Gemal AL. Luche JL. J. Am. Chem. Soc. 1981; 103: 5454
  • 8 Salomon RG. Subrata GhoshS. Org. Syn. Coll. Vol. VII . John Wiley & Sons; London: 1984: 177
  • 9 Pauley D. Anderson F. Hudlicky T. Org. Syn. Coll. Vol. VIII . John Wiley & Sons; London: 1993: 208
  • 10 Review: Kumara SwamyK. C. Bhuvan KumarN. N. Balaraman E. Pavan KumarK. V. P. Chem. Rev. 2009; 109: 2551
  • 11 Review: But TY. S. Toy PH. Chem. Asian J. 2007; 2: 1340
  • 12 Xu H.-C. Moeller KD. J. Am. Chem. Soc. 2010; 132: 2839
  • 13 McCarroll AJ. Walton JC. Angew. Chem. Int. Ed. 2001; 40: 2224

    • Reviews:
    • 14a Malacria M. Chem. Rev. 1996; 96: 289
    • 14b Ryu I. Sonoda N. Curran DP. Chem. Rev. 1996; 96: 177
  • 15 Trost BM. Brennan MK. Synthesis 2009; 3003
  • 16 Galliford CV. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
  • 17 Marti C. Carreira EM. Eur. J. Org. Chem. 2003; 2209
  • 18 Evans PA. Lai KW. Zhang HR. Huffman JC. Chem. Commun. 2006; 844
  • 19 Evans PA. Manangan T. Rheingold AL. J. Am. Chem. Soc. 2000; 122: 11009
  • 20 ORTEP pictures for the other triquinanes 38, 45, 46, and 51 are given in the Supporting Information.