Synthesis 2018; 50(13): 2473-2489
DOI: 10.1055/s-0036-1589534
short review
© Georg Thieme Verlag Stuttgart · New York

Isoxazol-5-ones as Strategic Building Blocks in Organic Synthesis

Amanda F. da Silva
Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-970, Campinas, SP, Brazil   Email: idjurberg@iqm.unicamp.br
,
Alessandra A. G. Fernandes
Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-970, Campinas, SP, Brazil   Email: idjurberg@iqm.unicamp.br
,
Samuel Thurow
Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-970, Campinas, SP, Brazil   Email: idjurberg@iqm.unicamp.br
,
Mateus L. Stivanin
Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-970, Campinas, SP, Brazil   Email: idjurberg@iqm.unicamp.br
,
Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-970, Campinas, SP, Brazil   Email: idjurberg@iqm.unicamp.br
› Author Affiliations
The authors thank FAPESP (2017/24017-0) and CNPq (458416/2014-2) for financial support of our research program. CAPES is acknowledged for Ph.D. fellowships to A.F.S. and A.A.G.F. and a post-doctoral fellowship to S.T. Faepex-Unicamp (127/16) is acknowledged for a M.Sc. fellowship to M.L.S.
Further Information

Publication History

Received: 21 February 2018

Accepted after revision: 03 April 2018

Publication Date:
17 May 2018 (online)


Abstract

Isoxazol-5-one rings have been identified as relevant motifs in drug candidates, agrochemicals, and materials. Furthermore, this heterocycle has been also applied as a versatile building block for the preparation of a variety of densely functionalized molecules. This short review will present the most representative applications of isoxazol-5-ones in organic synthesis while discussing their properties and reactivity.

1 Introduction

1.1 General Aspects

1.1.1 Tautomerism

1.1.2 Importance: Natural Products Isolation, Biological Activity, and Materials

1.1.3 Preparation Methods

2 Isoxazol-5-ones in Organic Synthesis

2.1 General Reactivity

2.2 Specific Examples

2.2.1 Alkylation Strategies

2.2.2 Alkyne Synthesis

2.2.3 Annulation Reactions

2.2.4 N–O Bond Insertions

2.2.4.1 Preparation of 1,3-Oxazin-6-ones

3 Conclusions

 
  • References

  • 1 Boulton AJ. Katritzky AR. Tetrahedron 1961; 12: 41
  • 2 Benson SW. J. Chem. Educ. 1965; 42: 502

    • For previous reviews on the chemistry of isoxazol-5-ones, see:
    • 3a Batra S. Bhaduri AP. J. Indian Inst. Sci. 1994; 74: 213
    • 3b Beccalli EM. Pocar D. Zonai C. Targets Heterocycl. Syst. 2003; 7: 31

    • For a review on base-catalyzed rearrangements involving isoxazol-5(2H)-ones, see:
    • 3c Prager RH. Williams CM. Heterocycles 1999; 51: 3013

    • Considering only nitroisoxazol-5-ones, see:
    • 3d Nishiwaki N. Curr. Med. Chem. 2017; 24: 3728
    • 4a Wollweber H.-J. Wentrup C. J. Org. Chem. 1985; 50: 2041
    • 4b Woodcock S. Green DV. S. Vincent MA. Hillier IH. Guest MF. Sherwood P. J. Chem. Soc., Perkin Trans. 2 1992; 2151
    • 4c Katritzky AR. Lagowski JM. Adv. Heterocycl. Chem. 1963; 2: 27
    • 4d Cramer CJ. Thrular DG. J. Am. Chem. Soc. 1993; 115: 8810
  • 5 Hedner E. Sjögren M. Hodzic S. Andersson R. Göransson U. Jonsson PR. Bohlin L. J. Nat. Prod. 2008; 71: 330
    • 6a Iwama T. Nagai Y. Tamura N. Harada S. Nagaoka A. Eur. J. Pharmacol. 1991; 197: 187

    • See also:
    • 6b Yu M. Wang J. Tang K. Shi X. Wang S. Zhu W.-M. Zhang X.-H. Microbiology 2012; 158: 835
    • 6c Becker T. Pasteels J. Weigel C. Dahse H.-M. Voigt K. Boland W. Nat. Prod. Rep. 2017; 34: 343
  • 7 Parish CA. Smith SK. Calati K. Zink D. Wilson K. Roemer T. Jiang B. Xu D. Bills G. Platas G. Peláez F. Díez MT. Tsou N. McKeown AE. Ball RG. Powles MA. Yeung L. Liberator P. Harris G. J. Am. Chem. Soc. 2008; 130: 7060
  • 8 Pasteels JM. Braekman JC. Daloze D. Ottinger R. Tetrahedron 1982; 38: 1891
  • 9 Lambein F. Kuo Y.-H. Van Parijs R. Heterocycles 1976; 4: 567
  • 10 Rozan P. Kuo Y.-H. Lambein F. Phytochemistry 2001; 58: 281
    • 11a Kafle B. Aher NG. Khadka D. Park H. Cho H. Chem. Asian J. 2011; 6: 2073

    • See also, for antidiabetic agents:
    • 11b Kees KL. Caggiano TJ. Steiner KE. Fitzgerald JJ. Jr. Kates MJ. Christos TE. Kulishoff JM. Jr. Moore RD. McCaleb ML. J. Med. Chem. 1995; 38: 617
    • 12a Tang M. Odejinmi SI. Allette YM. Vankayalapati H. Lai K. Bioorg. Med. Chem. 2011; 19: 5886
    • 12b Chande MS. Verma RS. Barve PA. Khanwelkar RR. Vaidya RB. Ajaikumar KB. Eur. J. Med. Chem. 2005; 40: 1143
    • 13a Laufer SA. Margutti S. J. Med. Chem. 2008; 51: 2580
    • 13b Laughlin SK. Clark MP. Djung JF. Golebiowski A. Brugel TA. Sabat M. Bookland RG. Laufersweiler MJ. VanRens JC. Townes JA. De B. Hsieh LC. Xu SC. Walter RL. Mekel MJ. Janusz MJ. Bioorg. Med. Chem. Lett. 2005; 15: 2399
    • 13c Minkkilä A. Savinainen JR. Käsnänen H. Xhaard H. Nevalainen T. Laitinen JT. Poso A. Leppänen J. Saario SM. ChemMedChem 2009; 4: 1253
    • 13d Vergelli C. Schepetkin IA. Crocetti L. Iacovone A. Giovannoni MP. Guerrini G. Khlebnikov AI. Ciattini S. Ciciani G. Quinn MT. J. Enzyme Inhib. Med. Chem. 2017; 32: 821
    • 13e Demers JP. Hageman WE. Johnson SG. Klaubert DH. Look RA. Moore JB. Bioorg. Med. Chem. Lett. 1994; 4: 2451
  • 14 Hung TV. Janowski WK. Prager RH. Aust. J. Chem. 1985; 38: 931
    • 15a Mahajan SS. Scian M. Sripathy S. Posakony J. Lao U. Loe TK. Leko V. Thalhofer A. Schuler AD. Bedalov A. Simon JA. J. Med. Chem. 2014; 57: 3283
    • 15b Tong Y. Stewart KD. Thomas S. Przytulinska M. Johnson EF. Klinghofer V. Leverson J. McCall O. Soni NB. Luo Y. Lin N.-H. Sowin TJ. Giranda VL. Penning TD. Bioorg. Med. Chem. Lett. 2008; 18: 5206
  • 16 Drizin I. Altenbach RJ. Buckner SA. Whiteaker KL. Scott VE. Darbyshire JF. Jayanti V. Henry RF. Coghlan MJ. Gopalakrishnan M. Carroll WA. Bioorg. Med. Chem. 2004; 12: 1895
    • 17a Lehtonen K. Summers LA. Carter GA. Pestic. Sci. 1972; 3: 357
    • 17b Kömürcü ŞG. Rollas S. Yilmaz N. Çevikbaş A. Drug Metabol. Drug Interact. 1995; 12: 161
    • 19a Biju S. Gopakumar N. Bünzli J.-CG. Scopelliti R. Kim HK. Reddy ML. P. Inorg. Chem. 2013; 52: 8750
    • 19b Biju S. Reddy ML. P. Freire RO. Inorg. Chem. Commun. 2007; 10: 393
    • 19c Biju S. Ambili Raj DB. Reddy ML. P. Jayasankar CK. Cowley AH. Findlater M. J. Mater. Chem. 2009; 19: 1425
    • 19d Biju S. Ambili Raj DB. Reddy ML. P. Kariuki BM. Inorg. Chem. 2006; 45: 10651
  • 20 Poe A. Pelle AD. Byrnes S. Thayumanavan S. Chem. Eur. J. 2015; 21: 7721
    • 21a Andreu R. Carrasquer L. Franco S. Garín J. Orduna J. de Baroja NM. Alicante R. Villacampa B. Allain M. J. Org. Chem. 2009; 74: 6647
    • 21b Andreu R. Carrasquer L. Garín J. Modrego MJ. Orduna J. Alicante R. Villacampa B. Allain M. Tetrahedron Lett. 2009; 50: 2920
  • 22 Alías S. Andreu R. Blesa MJ. Cerdán MA. Franco S. Garín J. López C. Orduna J. Sanz J. Alicante R. Villacampa B. Allain M. J. Org. Chem. 2008; 73: 5890
  • 23 Li Q. Lu C. Zhu J. Fu E. Zhong C. Li S. Cui Y. Qin J. Li Z. J. Phys. Chem. B 2008; 112: 4545
  • 24 Pérez-Moreno J. Zhao Y. Clays K. Kuzyk MG. Shen Y. Qiu L. Hao J. Guo K. J. Am. Chem. Soc. 2009; 131: 5084
  • 25 Li X. Liu B. Yi P. Yi R. Yu X. Chmielewski PJ. J. Org. Chem. 2011; 76: 2345
    • 26a Xie Y. Morimoto T. Furuta H. Angew. Chem. Int. Ed. 2006; 45: 6907
    • 26b Zilbermann I. Meron E. Maimon E. Soifer L. Elbaz L. Korin E. Bettelheim A. J. Porphyrins Phthalocyanines 2006; 10: 63
    • 26c Maeda H. Morimoto T. Osuka A. Furuta H. Chem. Asian J. 2006; 1: 832
  • 27 Niino T. Toganoh M. Andrioletti B. Furuta H. Chem. Commun. 2006; 4335
    • 28a Maeda H. Furuta H. Pure Appl. Chem. 2006; 78: 29
    • 28b Chmielewski PJ. Angew. Chem. Int. Ed. 2005; 44: 6417
    • 28c Hung C.-H. Chang C.-H. Ching W.-M. Chuang C.-H. Chem. Commun. 2006; 1866
    • 28d Toganoh M. Ogawa H. Morimoto T. Furuta H. Supramol. Chem. 2009; 21: 324
    • 29a Poon C.-T. Zhao S. Wong W.-K. Kwong DW. J. Tetrahedron Lett. 2010; 51: 664
    • 29b Toganoh M. Miyachi H. Akimaru H. Ito F. Nagamura T. Furuta H. Org. Biomol. Chem. 2009; 7: 3027
    • 29c D’souza F. Smith PM. Rogers L. Zandler ME. Islam D.-MS. Araki Y. Ito O. Inorg. Chem. 2006; 45: 5057
    • 30a Katritzky AR. Barczynski P. Ostercamp DL. Yousaf TI. J. Org. Chem. 1986; 51: 4037
    • 30b Jacobsen N. Kolind-Andersen H. Christensen J. Can. J. Chem. 1984; 62: 1940
    • 30c Abignente E. de Caprariis P. J. Heterocycl. Chem. 1983; 20: 1597

      Using n-BuLi:
    • 31a Dannhardt G. Laufer S. Obergrusberger I. Synthesis 1989; 275

    • Using NaOH (aq):
    • 31b Lo Vechio G. Lamonica G. Cum G. Gazz. Chim. Ital. 1963; 93: 15

      For variations, see also:
    • 32a Altuğ C. Dürüst Y. Elliott MC. Tetrahedron Lett. 2009; 50: 7392
    • 32b Altuğ C. Dürüst Y. Elliott MC. Kariuki BM. Rorstad T. Zaal M. Org. Biomol. Chem. 2010; 8: 4978
  • 33 Griffiths JS. Beam CF. Hauser CR. J. Chem. Soc. C 1971; 974
  • 34 Yao W. Bian M. Wang G. Ma C. Synthesis 2011; 1998
  • 35 Han R. Qi J. Gu J. Ma D. Xie X. She X. ACS Catal. 2013; 3: 2705
  • 36 Cheng Q.-Q. Lankelma M. Wherritt D. Arman H. Doyle MP. J. Am. Chem. Soc. 2017; 139: 9839
  • 37 Nakamura I. Okamoto M. Terada M. Org. Lett. 2010; 12: 2453
  • 38 Conte ML. Carroll KS. Angew. Chem. Int. Ed. 2012; 51: 6502
  • 39 Dzhons DY. Budruev AV. Beilstein J. Org. Chem. 2016; 12: 874
    • 40a Sandoval D. Frazier CP. Bugarin A. de Alaniz JR. J. Am. Chem. Soc. 2012; 134: 18948
    • 40b Frazier CP. Engelking JR. de Alaniz JR. J. Am. Chem. Soc. 2011; 133: 10430
    • 40c Frazier CP. Bugarin A. Engelking JR. de Alaniz JR. Org. Lett. 2012; 14: 3620
  • 41 Yang W. Sun J. Xu X. Zhang Q. Liu Q. Chem. Commun. 2014; 50: 4420
  • 42 Gao X.-A. Yan R.-L. Wang X.-X. Yan H. Li J. Guo H. Huang G.-S. J. Org. Chem. 2012; 77: 7700
  • 43 Biswas A. Karmakar U. Pal A. Samanta R. Chem. Eur. J. 2016; 22: 13826
  • 44 Chicha H. Abbassi N. Rakib EM. Khouili M. Ammari LE. Spinelli D. Tetrahedron Lett. 2013; 54: 1569
    • 45a Abdel-Rahman AH. Keshk EM. Hanna MA. El-Bady ShM. Bioorg. Med. Chem. 2004; 12: 2483
    • 45b Villemin D. Martin B. Garrigues B. Synth. Commun. 1993; 23: 2251

      Alkylation with alkyl halides:
    • 46a Atfani M. Lubell WD. J. Org. Chem. 1995; 60: 3184

    • Alkylation with diazomethane:
    • 46b De Sarlo F. Tetrahedron 1967; 23: 831

    • Pd-catalyzed allylic substitution:
    • 46c Moreno-Mañas M. Pérez M. Pleixats R. Tetrahedron 1994; 50: 515
    • 47a Seeman JI. Chem. Rev. 1983; 83: 83

    • See also:
    • 47b Seeman JI. J. Chem. Educ. 1986; 63: 42
  • 49 Hellmuth T. Frey W. Peters R. Angew. Chem. Int. Ed. 2015; 54: 2788

    • For previous investigations of [3,3]-sigmatropic shifts involving isoxazol-5-ones, see:
    • 50a Makisumi Y. Sasatani T. Tetrahedron Lett. 1969; 10: 543
    • 50b Gomes MJ. S. Pinto LF. V. Glória PM. C. Rzepa HS. Prabhakar S. Lobo AM. Chem. Central J. 2013; 7: 94
    • 50c Grigg R. Sarkar MR. A. Thayaparan A. Sridharan V. Fishwick CW. G. Tetrahedron 2007; 63: 7213
  • 51 Rieckhoff S. Meisner J. Kästner J. Frey W. Peters R. Angew. Chem. Int. Ed. 2018; 57: 1404
  • 52 Meng W.-T. Zheng Y. Nie J. Xiong H.-Y. Ma J.-A. J. Org. Chem. 2013; 78: 559
  • 53 An asymmetric organocatalytic fluorination protocol of isoxazol-5-ones has been also reported, see: Zhang H. Wang B. Cui L. Bao X. Qu J. Song Y. Eur. J. Org. Chem. 2015; 2143
    • 54a Wentrup C. Winter H.-W. Angew. Chem. Int. Ed. 1978; 17: 609

    • See also:
    • 54b Wentrup C. Reichen W. Helv. Chim. Acta 1976; 59: 2615
  • 55 For a description of the FVP apparatus, see: Lân NM. Wentrup C. Helv. Chim. Acta 1976; 59: 2068
    • 56a Wentrup C. Winter H.-W. Kvaskoff D. J. Phys. Chem. A 2015; 119: 6370
    • 56b Rzepa HS. Wentrup C. J. Org. Chem. 2013; 78: 7565
  • 57 See also: Mackie ID. Johnson RP. J. Org. Chem. 2009; 74: 499
  • 58 Winter H.-W. Wentrup C. Angew. Chem. Int. Ed. 1980; 19: 720
  • 59 Wentrup C. Briehl H. Lorenčak P. Vogelbacher UJ. Winter H.-W. Maquestiau A. Flammang R. J. Am. Chem. Soc. 1988; 110: 1337
  • 60 Wentrup C. Stutz U. Wollweber H.-J. Angew. Chem. Int. Ed. 1978; 17: 688
  • 61 Wentrup C. Gerecht B. Laqua D. Briehl H. Winter H.-W. Reisenauer HP. Winnewisser M. J. Org. Chem. 1981; 46: 1046
  • 62 Kappe CO. Kvaskoff D. Moloney DW. J. Flammang R. Wentrup C. J. Org. Chem. 2001; 66: 1827
    • 63a Reichen W. Wentrup C. Helv. Chim. Acta 1976; 59: 2618
    • 63b Wentrup C. Winter H.-W. J. Org. Chem. 1981; 46: 1045
  • 64 Wentrup C. Becker J. Winter H.-W. Angew. Chem. Int. Ed. 2015; 54: 5702
  • 65 Prager RH. Singh Y. Tetrahedron 1993; 49: 8147
  • 66 Clark AD. Janowski WK. Prager RH. Tetrahedron 1999; 55: 3637
  • 67 Cox M. Heidarizadeh F. Prager RH. Aust. J. Chem. 2000; 53: 665
    • 68a Prager RH. Smith JA. Aust. J. Chem. 1995; 48: 217
    • 68b Prager RH. Williams CM. Aust. J. Chem. 1996; 49: 1315
    • 68c Khalafy J. Svensson CE. Prager RH. Williams CM. Tetrahedron Lett. 1998; 39: 5405
    • 68d Singh Y. Prager RH. Aust. J. Chem. 1992; 45: 1811
  • 69 Review: Zard SZ. Chem. Commun. 2002; 1555

    • The development of this reaction can be traced back to the early reports of Abidi. See:
    • 70a Abidi SL. J. Chem. Soc., Chem. Commun. 1985; 1222
    • 70b Abidi SL. Tetrahedron Lett. 1986; 27: 267

    • See also:
    • 70c Abidi SL. J. Org. Chem. 1986; 51: 2687

    • For mechanistic discussions about the Abidi reaction, see:
    • 70d Corey EJ. Seibel WL. Kappos JC. Tetrahedron Lett. 1987; 28: 4921
    • 70e Boivin J. Elkaim L. Ferro PG. Zard SZ. Tetrahedron Lett. 1991; 32: 5321

      This does not mean that 1,2-additions to the carbonyl group of isoxazol-5-ones are not possible. See, for instance:
    • 72a Beccalli EM. Gelmi ML. Marchesini A. Tetrahedron 1998; 54: 14401
    • 72b Beccalli EM. Marchesini A. Pilati T. Synth. Commun. 1993; 23: 685
    • 72c Rao MH. Reddy AP. R. Veeranagaiah V. Synthesis 1992; 446
  • 73 Boivin J. Huppé S. Zard SZ. Tetrahedron Lett. 1995; 36: 5737
  • 74 Huppé S. Rezaei H. Zard S. Chem. Commun. 2001; 1894
    • 75a Liu HJ. Ogino T. Tetrahedron Lett. 1973; 14: 4937
    • 75b Liu HJ. Majumdar SP. Synth. Commun. 1975; 5: 125
    • 75c Nagao K. Chiba M. Kim SW. Synthesis 1983; 197
    • 75d Mock WL. Hartmann ME. J. Org. Chem. 1977; 42: 459
    • 75e Mock WL. Hartmann ME. J. Org. Chem. 1977; 42: 466
    • 75f Vinod D. Warnhoff EW. J. Org. Chem. 1983; 48: 2590
    • 76a Fraser RR. Kong F. Synth. Commun. 1988; 18: 1071

    • For a somehow similar halogenation procedure, see also:
    • 76b Klimczyk S. Huang X. Farès C. Maulide N. Org. Biomol. Chem. 2012; 10: 4327
  • 77 Capreti NM. R. Jurberg ID. Org. Lett. 2015; 17: 2490
  • 78 Jurberg ID. Chem. Eur. J. 2017; 23: 9716
  • 79 Tietze LF. Brumby T. Pretor M. Remberg G. J. Org. Chem. 1988; 53: 810
  • 80 For an additional discussion on the proton-catalyzed mechanism of isomerization of alkylideneisoxazol-5-ones, see: Rotondo E. Rotondo A. Bruschetta G. Risitano F. Foti F. Tetrahedron Lett. 2002; 43: 5989
  • 81 Sutariya TR. Labana BM. Parmar BD. Parmar NJ. Kant R. Gupta VK. RSC Adv. 2015; 5: 23519
  • 82 Feng B.-B. Xu J. Zhang M.-M. Wang X.-S. Synthesis 2016; 48: 65
  • 83 Shi W. Wang Y. Zhu Y. Zhang M. Song L. Deng H. Synthesis 2016; 48: 3527
  • 84 Altieri E. Cordaro M. Grassi G. Risitano F. Scala A. Synlett 2010; 2106

    • For additional examples of spiro-isoxazol-5-ones built with perfect diastereocontrol, see also:
    • 85a Risitano F. Grassi G. Foti F. Romeo R. Synlett 2002; 116
    • 85b Vereshchagin AN. Elinson MN. Korshunov AD. Anisina YE. Novikov RA. Goloveshkin AS. Bushmarinov IS. Zlotin SG. Egorov MP. Synlett 2016; 27: 2489
    • 85c Risitano F. Grassi G. Foti F. Nicolò F. Condello M. Tetrahedron 2002; 58: 191
    • 85d Foti F. Grassi G. Risitano F. Nicolò F. Rotondo A. Helv. Chim. Acta 2001; 84: 3313
  • 86 Zhao T. Zhang H. Cui L. Wang C. Qu J. Wang B. ChemistrySelect 2016; 1: 3713

    • For a selection of additional examples see:
    • 87a Haibach MC. Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
    • 87b Peng B. Maulide N. Chem. Eur. J. 2013; 19: 13274
    • 87c Jurberg ID. Odabachian Y. Gagosz F. J. Am. Chem. Soc. 2010; 132: 3543
    • 87d McQuaid KM. Sames D. J. Am. Chem. Soc. 2009; 131: 402
    • 87e Jurberg ID. Peng B. Wöstefeld E. Wasserloos M. Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
    • 87f McQuaid KM. Long JZ. Sames D. Org. Lett. 2009; 11: 2972
  • 88 Cui B.-D. Li S.-W. Zuo J. Wu Z.-J. Zhang X.-M. Yuan W.-C. Tetrahedron 2014; 70: 1895
  • 89 Okamoto K. Shimbayashi T. Tamura E. Ohe K. Chem. Eur. J. 2014; 20: 1490
  • 90 Okamoto K. Oda T. Kohigashi S. Ohe K. Angew. Chem. Int. Ed. 2011; 50: 11470
  • 91 Okamoto K. Sasakura K. Shimbayashi T. Ohe K. Chem. Lett. 2016; 45: 988
  • 92 Rieckhoff S. Hellmuth T. Peters R. J. Org. Chem. 2015; 80: 6822
  • 93 Rieckhoff S. Frey W. Peters R. Eur. J. Org. Chem. 2018; 1797
  • 94 Okamoto K. Shimbayashi T. Yoshida M. Nanya A. Ohe K. Angew. Chem. Int. Ed. 2016; 55: 7199
  • 95 Rieckhoff S. Titze M. Frey W. Peters R. Org. Lett. 2017; 19: 4436
  • 96 Abbiati G. Beccalli EM. Broggini G. Zoni C. Tetrahedron 2003; 59: 9887

    • For early examples of heterocycles prepared via N–O bond cleavage, followed by a cyclization event, see:
    • 97a Beccalli EM. Marchesini A. Synthesis 1991; 861
    • 97b Beccalli EM. Marchesini A. Pilati T. Synthesis 1991; 127
    • 97c Jeffery D. Prager RH. Turner D. Dreimanis M. Tetrahedron 2002; 58: 9965
  • 98 For examples of N–O bond cleavage events, followed by decarboxylation or other fragmentation steps, see: Zvilichovsky G. Gurvich V. Segev S. J. Org. Chem. 1995; 60: 5250
  • 99 Too PC. Wang Y.-F. Chiba S. Org. Lett. 2010; 12: 5688
  • 100 Stivanin ML. Duarte M. Sartori C. Capreti NM. R. Angolini CF. F. Jurberg ID. J. Org. Chem. 2017; 82: 10319
  • 101 Beccalli EM. Marchesini A. Gelmi ML. Pilati T. J. Org. Chem. 1987; 52: 1666

    • See also:
    • 102a Anderson DJ. J. Org. Chem. 1986; 51: 945
    • 102b Attanasi OA. Bartoccini S. Favi G. Giorgi G. Perrulli FR. Santeusanio S. Tetrahedron 2012; 68: 608
    • 102c Beccalli EM. La Rosa C. Marchesini A. J. Org. Chem. 1984; 49: 4287
    • 102d Beccalli EM. Marchesini A. Tetrahedron 1989; 45: 7485
    • 102e Beccalli EM. Marchesini A. J. Org. Chem. 1987; 52: 3426
  • 103 Jurberg ID. Davies HM. L. Org. Lett. 2017; 19: 5158