Synthesis 2018; 50(10): 1935-1957
DOI: 10.1055/s-0036-1589532
review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments and Applications of the Chiral Brønsted Acid Catalyzed Allylboration of Carbonyl Compounds

Daniel M. Sedgwick
a   Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain   Email: pablo.barrio@uv.es
b   Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
,
Matthew N. Grayson
c   Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
,
Santos Fustero
a   Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain   Email: pablo.barrio@uv.es
b   Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
,
Pablo Barrio*
a   Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain   Email: pablo.barrio@uv.es
› Author Affiliations
We thank the Spanish MINECO (CTQ2013-43310 and CTQ2017-84249-P) and Generalitat Valenciana (PROMETEOII/2014/073) for their financial support. D.M.S. is grateful to the Spanish Government for an FPU fellowship. We are grateful to Girton College, Cambridge (Research Fellowship to M.N.G.) for financial support.
Further Information

Publication History

Received: 04 December 2017

Accepted after revision: 16 January 2018

Publication Date:
11 April 2018 (online)


In memory of Prof José Barluenga

Abstract

The 50-year-old allylboration reaction has seen dramatic developments since the dawn of the new century after the first catalytic asymmetric versions came into play. In the past decade alone, several methodologies capable of achieving the desired homoallylic alcohols in over 90% ee have been developed. This review focuses on the chiral Brønsted acid catalyzed allylboration reaction, covering everything from the very first examples and precedents to modern day variations and applications.

1 Introduction

2 Early Developments

3 Synthetic Applications

4 Variants

5 Computational Contribution

6 Conclusions

 
  • References


    • For recent reviews on asymmetric allylation reactions, see:
    • 1a Yus M. González-Gómez C. Foubelo F. Chem. Rev. 2013; 113: 5595
    • 1b Yus M. González-Gómez JC. Foubelo F. Chem. Rev. 2011; 111: 7774
    • 2a Diner C. Szabó KJ. J. Am. Chem. Soc. 2017; 139: 2
    • 2b Huo H.-X. Duvall JR. Huang M.-Y. Hong R. Org. Chem. Front. 2014; 1: 303
    • 2c Carreira EM. Kvaerno L. In Classics in Strereoselective Synthesis . Wiley-VCH; Weinheim: 2009. Chap. 5, 164
    • 2d Lachance H. Hall DG. Org. React. 2008; 73: 1
    • 2e Denmark SE. Fu J. Chem. Rev. 2003; 103: 2763
    • 2f Denmark SE. Almstead NG. In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000: 299
    • 2g Chemler SR. Roush WR. In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000. Chap. 10, 403
    • 2h Yamamoto Y. Asao N. Chem. Rev. 1993; 93: 2207
    • 2i Roush WR. In Comprehensive Organic Synthesis . Vol. 2. Trost BM. Fleming I. Pergamon; Oxford: 1991: 1
    • 3a Brown HC. Jadhav PK. J. Am. Chem. Soc. 1983; 105: 2092
    • 3b Brown HC. Bhat KS. J. Am. Chem. Soc. 1986; 108: 293
    • 3c Roush WR. Walts AE. Hoong LK. J. Am. Chem. Soc. 1985; 107: 8186
    • 3d Roush WR. Ando K. Powers DB. Palkowitz AD. Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339
  • 4 Brown HC. Racherla US. Pellechia PJ. J. Org. Chem. 1990; 55: 1868
  • 5 Denmark SE. Weber EJ. Helv. Chim. Acta 1983; 66: 1655
  • 6 For a recent account on chair-like six-membered transition states, see: Mejuch T. Gilboa N. Gayon E. Wang H. Houk KN. Marek I. Acc. Chem. Res. 2013; 46: 1659

    • For some enantioselective allylations using other allylating reagents, see:
    • 7a Furuta K. Mouri M. Yamamoto H. Synlett 1991; 561
    • 7b Costa AL. Piazza MG. Tagliavini E. Trombini C. Umani-Ronchi A. J. Am. Chem. Soc. 1993; 115: 7001
    • 7c Keck GE. Tarbet KH. Geraci LS. J. Am. Chem. Soc. 1993; 115: 8467
    • 7d Denmark SE. Fu J. J. Am. Chem. Soc. 2001; 123: 9488
    • 7e Malkov A. Orsini M. Pernazza D. Muir KW. Langer V. Meghani P. Kocovsky P. Org. Lett. 2002; 4: 1047
    • 7f Kim IS. Ngai M. Krische MJ. J. Am. Chem. Soc. 2008; 130: 14891
    • 8a Kennedy JW. J. Hall DG. J. Am. Chem. Soc. 2002; 124: 11586
    • 8b Ishiyama T. Ahiko T. Miyaura N. J. Am. Chem. Soc. 2002; 124: 12414
    • 8c Lachance H. Lu X. Gravel M. Hall DG. J. Am. Chem. Soc. 2003; 125: 10160
    • 8d Wada R. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc. 2004; 126: 8910
    • 8e Rauniyar V. Hall DG. J. Am. Chem. Soc. 2004; 126: 4518
  • 9 Yu SH. Ferguson MJ. McDonald R. Hall DG. J. Am. Chem. Soc. 2005; 127: 12808
  • 10 Rauniyar V. Hall DG. Angew. Chem. Int. Ed. 2006; 45: 2426
    • 11a Yamamoto H. Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
    • 11b Ishihara K. Kaneeda M. Yamamoto H. J. Am. Chem. Soc. 1994; 116: 11179
    • 11c Nakamura S. Kaneeda M. Ishihara K. Yamamoto H. J. Am. Chem. Soc. 2000; 122: 8120
    • 11d Ishihara K. Nakamura S. Kaneeda M. Yamamoto H. J. Am. Chem. Soc. 1996; 118: 12854
    • 11e Ishihara K. Nakamura S. Yamamoto H. J. Org. Chem. 1998; 63: 6444
    • 11f Ishihara K. Nakashima D. Hiraiwa Y. Yamamoto H. J. Am. Chem. Soc. 2003; 125: 24
  • 12 Paterson I. Pure Appl. Chem. 1992; 64: 1821
    • 14a Lou S. Moquist PN. Schaus SE. J. Am. Chem. Soc. 2006; 128: 12660
    • 14b Barnett DS. Moquist PN. Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 8679
    • 14c For a subsequent application to methallylation, see: Zhang Y. Li N. Qu B. Ma S. Lee H. Gonnella NC. Gao J. Li W. Tan Z. Reeves JT. Wang J. Lorenz JC. Li G. Reeves DC. Premasiri A. Grinberg N. Haddad N. Lu BZ. Song JJ. Senanayake CH. Org. Lett. 2013; 15: 1710
  • 15 Paton RS. Goodman JM. Pellegrinet SC. Org. Lett. 2009; 11: 37

    • For seminal contributions on chiral phosphoric acid catalysis, see:
    • 16a Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 16b Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356

      For reviews on chiral phosphoric acid catalysis, see:
    • 17a Merad J. Lalli C. Bernadat G. Maury J. Masson G. Chem.Eur. J. 2018; in press ; DOI: 10.1002/chem.201703556
    • 17b Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2017; 117: 10608
    • 17c Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
    • 17d Terada M. Curr. Org. Chem. 2011; 15: 2227
    • 17e Terada M. Bull. Chem. Soc. Jpn. 2010; 83: 101
    • 17f Terada M. Synthesis 2010; 1929
    • 17g Zamfir A. Schenker S. Freund M. Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
    • 17h Terada M. Chem. Commun. 2008; 4097
    • 17i Adair G. Mukherjee S. List B. Aldrichimica Acta 2008; 41: 31
    • 17j Akiyama T. Chem. Rev. 2007; 107: 5744
    • 17k Doyle AG. Jacobsen EN. Chem. Rev. 2007; 107: 5173
    • 17l Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 17m Connon SJ. Angew. Chem. Int. Ed. 2006; 45: 3909
  • 18 Jain P. Antilla JC. J. Am. Chem. Soc. 2010; 132: 11884
  • 19 In the SI of reference 13b Hall described an unsuccessful attempt of using unsubstituted BINOL-phosphoric acid as catalyst in an asymmetric allylation. Akiyama and Terada reported substitution at the 3,3′-positions of the BINOL skeleton as the key for achieving high enantioselectivities.
  • 20 Xing C.-H. Liao Y.-X. Zhang Y. Sabarova D. Bassous M. Hu Q.-S. Eur. J. Org. Chem. 2012; 1115

    • For recent applications of SPINOL-based phosphoric acids in asymmetric organocatalysis, see:
    • 21a Glavac D. Zheng C. Dokli I. You S.-L. Gredicak M. J. Org. Chem. 2017; 82: 8752
    • 21b Pinxterhuis EB. Gualtierotti J.-B. Heeres HJ. de Vries JG. Feringa BL. Chem. Sci. 2017; 8: 6409
    • 21c Tay J.-H. Arguelles AJ. DeMars MD. Zimmerman PM. Sherman DH. Nagorny P. J. Am. Chem. Soc. 2017; 139: 8570
  • 22 Allais F. Ducrot P.-H. Synthesis 2010; 1649
    • 23a Álvarez-Bercedo P. Falomir E. Murga J. Carda M. Marco JA. Eur. J. Org. Chem. 2008; 4015
    • 23b Dittoo A. Bellosta V. Cossy J. Synlett 2008; 2459
  • 24 Ouedraogo M. Carreyre H. Vandebrouck C. Bescond J. Raymond G. Guissou I.-P. Cognard C. Becq F. Potreau D. Cousson A. Marrot J. Coustard J.-M. J. Nat. Prod. 2007; 70: 2006
  • 25 Evans PA. Cui J. Gharpure SJ. Org. Lett. 2003; 5: 3883
  • 26 Bhakta U. Sullivan E. Hall DG. Tetrahedron 2014; 70: 678
  • 27 Fustero S. Rodríguez E. Lázaro R. Herrera L. Catalán S. Barrio P. Adv. Synth. Catal. 2013; 355: 1058
  • 28 For a related transformation using the corresponding Ellman’s imines, see: Fustero S. Lázaro R. Herrera L. Rodríguez E. Mateu N. Barrio P. Org. Lett. 2013; 15: 3770

    • For selected examples of relay catalysis using chiral phosphoric acid/transition metal binary systems, see:
    • 29a Zhu Y. He W. Wang W. Pitsch CE. Wang X. Wang X. Angew. Chem. Int. Ed. 2017; 56: 12206
    • 29b Narute S. Parnes R. Toste FD. Pappo D. J. Am. Chem. Soc. 2016; 138: 16553
    • 29c Han Z.-Y. Chen D.-F. Wang Y.-Y. Guo R. Wang P.-S. Wang C. Gong L.-Z. J. Am. Chem. Soc. 2012; 134: 6532
    • 29d Terada M. Toda Y. Angew. Chem. Int. Ed. 2012; 51: 2093
    • 29e Muratore ME. Holloway CA. Pilling AW. Storer RI. Trevitt G. Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
    • 29f Han Z.-Y. Xiao H. Chen X.-H. Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
    • 29g Sorimachi K. Terada M. J. Am. Chem. Soc. 2008; 130: 14452

      For a cross-metathesis/intramolecular aza-Michael process, see:
    • 30a Cai Q. Zheng C. You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666

    • For a cross-metathesis/intramolecular Friedel–Crafts alkylation sequence, see:
    • 30b Cai Q. Zhao ZA. You S.-L. Angew. Chem. Int. Ed. 2009; 48: 7428
  • 31 Rodríguez E. Grayson MN. Asensio A. Barrio P. Houk KN. Fustero S. ACS Catal. 2016; 6: 2506

    • The same authors have showcased the utility of other ortho-substituted benzaldehyde derivatives in DOS, see:
    • 32a Herrera L. Barrio P. Ibanez I. Roman R. Mateu N. Fustero S. Org. Lett. 2016; 18: 4722
    • 32b Sedgwick DM. Barrio P. Simon A. Román R. Fustero S. J. Org. Chem. 2016; 81: 8876
    • 32c Lázaro R. Román R. Sedgwick DM. Haufe G. Barrio P. Fustero S. Org. Lett. 2016; 18: 948
    • 32d Barrio P. Ibañez I. Herrera L. Román R. Catalán S. Fustero S. Chem. Eur. J. 2015; 21: 11579
    • 32e Fustero S. Lázaro R. Aiguabella N. Riera A. Simón-Fuentes A. Barrio P. Org. Lett. 2014; 16: 1224
  • 33 Low ee values on several o-alkynylbenzaldehydes had already been reported by Kotora, see: Hessler F. Betík R. Kadlčíková A. Belle R. Kotora M. Eur. J. Org. Chem. 2014; 7245
  • 34 Barrio P. Rodriguez E. Saito K. Fustero S. Akiyama T. Chem. Commun. 2015; 51: 5246
  • 35 For a recent account on Barrio’s contributions to the field, see: Barrio P. Rodríguez E. Fustero S. Chem. Rec. 2016; 16: 2046
    • 36a Sawicki M. Kwok A. Tredwell M. Gouverneur V. Beilstein J. Org. Chem. 2007; 3: 34
    • 36b Tredwell M. Tenza K. Pacheco MC. Gouverneur V. Org. Lett. 2005; 7: 4495
    • 36c Greedy B. Paris J.-M. Vidal T. Gouverneur V. Angew. Chem. Int. Ed. 2003; 42: 3291
    • 36d Thibaudeau S. Gouverneur V. Org. Lett. 2003; 5: 4891
  • 37 Recently, the reverse reaction sequence (electrophilic allylic fluorination/allylboration) using isomeric γ-silylvinylboronates has been described: Mace A. Tripoteau F. Zhao Q. Gayon E. Vrancken E. Campagne J.-M. Carboni B. Org. Lett. 2013; 15: 906
  • 38 Hessler F. Korotvička A. Nečas D. Valterová I. Kotora M. Eur. J. Org. Chem. 2014; 2543
  • 39 Koukal P. Kotora M. Chem. Eur. J. 2015; 21: 7408
  • 40 Kolská K. Ghavre M. Pour M. Hybelbauerová S. Kotora M. Asian J. Org. Chem. 2016; 5: 646
    • 41a Bulej P. Kuchař M. Panajotova V. Jegorov V. Collect. Czech. Chem. Commun. 1988; 53: 1862
    • 41b Grimová J. Vortel V. Lapka R. Lastovička J. Cesk. Fyziol. 1988; 37: 249
    • 41c Grimová J. Vortel V. Lapka R. Lastovička J. Cesk. Fyziol. 1990; 39: 133

      For some selected examples, see:
    • 42a Vlašaná K. Hrdina R. Valterová I. Kotora M. Eur. J. Org. Chem. 2010; 7040
    • 42b Malkov AV. Kysilka O. Edgar M. Kadlčíková A. Kotora M. Kočovský P. Chem. Eur. J. 2011; 17: 7162
    • 42c Motloch P. Valterová I. Kotora M. Adv. Synth. Catal. 2014; 356: 199
  • 43 Hellstrom WJ. G. Neuropsychiatr. Dis. Treat. 2009; 5: 37
  • 44 Lee SH. Kim IS. Li QR. Dong GR. Jeong LS. Jung YH. J. Org. Chem. 2011; 76: 10011
  • 45 Yoshida WY. Bryan PJ. Baker BJ. McClintock JB. J. Org. Chem. 1995; 60: 780
  • 46 Reddy LR. Org. Lett. 2012; 14: 1142
  • 47 Jain P. Wang H. Houk KN. Antilla JC. Angew. Chem. Int. Ed. 2012; 51: 1391
  • 48 Ding CH. Hou XL. Chem. Rev. 2011; 111: 1914
  • 49 Usanov DL. Yamamoto H. Angew. Chem. Int. Ed. 2010; 49: 8169
  • 50 Grayson MN. Goodman JM. J. Am. Chem. Soc. 2013; 135: 6142
  • 51 Pradillos CA. I. Kabeshov MA. Malkov AV. Angew. Chem. Int. Ed. 2013; 52: 5338
  • 52 Hoffmann RW. Weidmann U. J. Organomet. Chem. 1980; 195: 137
  • 53 Pietruszka J. Schöne N. Eur. J. Org. Chem. 2004; 5011
  • 54 Grayson MN. Pellegrinet SC. Goodman JM. J. Am. Chem. Soc. 2012; 134: 2716
  • 55 Shimizu H. Igarashi T. Miura T. Murakami M. Angew. Chem. Int. Ed. 2011; 50: 11465
  • 56 Miura T. Nishida Y. Morimoto M. Murakami M. J. Am. Chem. Soc. 2013; 135: 11497
  • 57 Miura T. Nishida Y. Murakami M. J. Am. Chem. Soc. 2014; 136: 6223
  • 58 Miura T. Nakahashi J. Murakami M. Angew. Chem. Int. Ed. 2017; 56: 6989
  • 59 Miura T. Nakahashi J. Zhou W. Shiratori Y. Stewart SG. Murakami M. J. Am. Chem. Soc. 2017; 139: 10903
  • 60 Hemelaere R. Carreaux F. Carboni B. Chem. Eur. J. 2014; 20: 14518
  • 61 Hemelaere R. Carreaux F. Carboni B. J. Org. Chem. 2013; 78: 6786
  • 62 Hemelaere R. Carreaux F. Carboni B. Eur. J. Org. Chem. 2015; 2470
    • 63a Ohlmann DM. Tschauder N. Stockis J. Dierker M. Gooßen LJ. J. Am. Chem. Soc. 2012; 134: 13716
    • 63b Mamone P. Grünberg MF. Fromm A. Khan BA. Gooßen LJ. Org. Lett. 2012; 14: 3716
  • 64 Tao Z. Li X. Han Z. Gong L. J. Am. Chem. Soc. 2015; 137: 4054
  • 65 Li L. Tao Z. Han Z. Gong L. Org. Lett. 2017; 19: 102
  • 66 Clot-Almenara L. Rodríguez-Escrich C. Osorio-Planes L. Pericàs MA. ACS Catal. 2016; 6: 7647
    • 67a Martín-Rapún R. Sayalero S. Pericàs MA. Green Chem. 2013; 15: 3295
    • 67b Maestre L. Ozkal E. Ayats C. Beltran A. Diaz-Requejo MM. Perez PJ. Pericàs MA. Chem. Sci. 2015; 6: 1510
    • 67c Llanes P. Sayalero S. Rodríguez-Escrich C. Green Chem. 2016; 18: 8
    • 67d Canellas S. Ayats C. Henseler AH. Pericàs MA. ACS Catal. 2017; 7: 1383
  • 68 Kundu DS. Schmidt J. Bleschke C. Thomas A. Blechert S. Angew. Chem. Int. Ed. 2012; 51: 5456
  • 69 Rueping M. Sugiono E. Steck A. Theissmann T. Adv. Synth. Catal. 2010; 352: 281
  • 70 Mayer-Gall T. Lee JW. Opwis K. List B. Gutmann JS. ChemCatChem 2016; 8: 1428
  • 71 Sakata K. Fujimoto H. J. Am. Chem. Soc. 2008; 130: 12519
  • 72 Wang H. Jain P. Antilla JC. Houk KN. J. Org. Chem. 2013; 78: 1208
  • 73 Simón L. Goodman JM. Org. Biomol. Chem. 2011; 9: 689
  • 74 Grayson MN. Yang Z. Houk KN. J. Am. Chem. Soc. 2017; 139: 7717