Synthesis 2018; 50(07): 1373-1401
DOI: 10.1055/s-0036-1589527
review
© Georg Thieme Verlag Stuttgart · New York

Acyl Azides: Versatile Compounds in the Synthesis of Various Heterocycles­

Metin Balci
Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey   eMail: mbalci@metu.edu.tr
› Institutsangaben
The authors are indebted to the Scientific and Technological Research Council of Turkey (TUBITAK, Grants Nr. 108-M-168 and 110-R-001), the Turkish Academy of Sciences (TUBA) and the Department of Chemistry at Middle East Technical University for their financial support of this work.
Weitere Informationen

Publikationsverlauf

Received: 05. Oktober 2017

Accepted after revision: 02. November 2017

Publikationsdatum:
01. Februar 2018 (online)


Abstract

Carbon–nitrogen bond formation is one of the most important reactions in organic chemistry. Various synthetic strategies for the generation of C–N bonds are described in the literature. For example, primary amines can be easily synthesized by the thermal decomposition of an acyl azide to an isocyanate, i.e. the Curtis rearrangement, followed by hydrolysis; the Curtius rearrangement has been used extensively. Furthermore, the advantage of the Curtius rearrangement is the isolation of acyl azides as well as the corresponding isocyanates. The isocyanates can be converted into various nitrogen-containing compounds upon reaction with various nucleophiles that can be used as important synthons for cyclization, in other words, for the synthesis of heterocycles. Therefore, this review demonstrates the importance of acyl azides not only in the synthesis acyclic systems, but also in the synthesis of various nitrogen-containing heterocycles.

1 Introduction

2 Synthesis of Acyl Azides

2.1 Acyl Azides from Carboxylic Acid Derivatives

2.2 Acyl Azides by Direct Transformation of Carboxylic Acids

2.3 Acyl Azides from Aldehydes

2.4 Carbamoyl Azides from Haloarenes, Sodium Azide, and N-Formylsaccharin

3 Mechanism of Formation of Isocyanates

4 Synthesis of Diacyl Azides

5 Synthetic Applications

5.1 Synthesis of Pyrimidinone Derivatives

5.2 Dihydropyrimidinone and Isoquinolinone Derivatives

5.3 Synthesis of Tetrahydroisoquinoline Skeleton

5.4 Synthesis of Five-Membered Heterocycles

5.5 Heterocycles Synthesized Starting from Homophthalic acid

5.6 Heterocycles Synthesized from 2-(Ethoxycarbonyl)nicotinic Acid

5.7 Formation of Aza-spiro Compounds

5.8 Parham-Type Cyclization

5.9 Diazepinone Derivatives

5.10 Synthesis of Pyridine Derivatives

5.11 Synthesis of Indole Derivatives

6 Miscellaneous

7 Conclusion

 
  • References

  • 1 Buchner E. Curtius T. Ber. Dtsch. Chem. Ges. 1885; 18: 2371
  • 2 Curtius T. Ber. Dtsch. Chem. Ges. 1890; 23: 3023
  • 3 Curtius T. J. Prakt. Chem. 1894; 50: 275
  • 4 Wrobleski A. Coombs C. Huh CW. Li SW. Aubé J. Org. React. 2012; 78: 1
  • 5 Li X.-J. Qiao J.-B. Sun J. Li X.-Q. Gu P. Org. Lett. 2014; 16: 2865
  • 6 Hofmann AW. Ber. Dtsch. Chem. Ges. 1881; 14: 2725
  • 7 Sy AO. Raksis JW. Tetrahedron Lett. 1980; 21: 2223
  • 8 Yoshimura A. Luedtke MW. Zhdankin VV. J. Org. Chem. 2012; 77: 2087
  • 9 Bauer L. Exner O. Angew. Chem., Int. Ed. Engl. 1974; 13: 376
  • 10 Salomon CJ. Breuer E. J. Org. Chem. 1997; 62: 3858
  • 11 Dubé P. Nathel NF. F. Vetelino M. Couturier M. Aboussafy CL. Pichette S. Jorgensen ML. Hardink M. Org. Lett. 2009; 11: 5622
  • 12 Eibler E. Sauer J. Tetrahedron Lett. 1974; 15: 2569
  • 13 Weinstock J. J. Org. Chem. 1961; 26: 3511
  • 14 Washbume SS. Peterson WR. Synth. Commun. 1972; 2: 227
  • 15 Arrieta A. Aizpurua JM. Palomo C. Tetrahedron Lett. 1984; 25: 3365
  • 16 Shioiri T. Ninomiya K. Yamada SI. J. Am. Chem. Soc. 1972; 94: 6203
  • 17 Kim JG. Jang DO. Synlett 2008; 2072
  • 18 Lago M. Arrieta A. Palomo C. Synth. Commun. 1983; 13: 289
  • 19 Arrieta A. Aizpurua JM. Palomo C. Tetrahedron Lett. 1984; 25: 3365
  • 20 Nowrouzi N. Jonaghanin MZ. Chin. Chem. Lett. 2012; 23: 442
  • 21 Gumaste VK. Bhawal BM. Deshmukh AR. Tetrahedron Lett. 2002; 43: 1345
  • 22 Falorni M. Porcheddu A. Taddei M. Tetrahedron Lett. 1999; 40: 4395
  • 23 Bandgar BP. Pandit SS. Tetrahedron Lett. 2002; 43: 3413
  • 24 Pulle JS. Sagar AD. Reddy SM. Yadav MV. Indo Am. J. Pharm. Res. 2014; 4: 5082 ; ISSN No: 2231-6876, http://www.iajpr.com/
  • 25 Marinescu L. Thinggaard J. Thomsen IB. Bols M. J. Org. Chem. 2003; 68: 9453
  • 26 Shinomoto Y. Yoshimura A. Shimizu H. Yamazaki M. Zhdankin VZ. Saito A. Org. Lett. 2015; 17: 5212
  • 27 Zhdankin VV. Krasutsky AP. Kuehl CJ. Simonsen AJ. Woodward JK. Mismash B. Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192
  • 28 Yadav K. Srivastava VP. Yadav LD. S. Synlett 2016; 27: 2826
    • 29a Smalley RK. Bingham TE. J. Chem. Soc. C 1969; 2481
    • 29b Brinkman MR. Rethelland D. Hayes ZJ. Tetrahedron Lett. 1973; 989
    • 29c Felt GR. Lwowski W. J. Org. Chem. 1976; 41: 96
  • 30 Abu-Eittah RH. Mohamed AA. Al-Omar AM. Int. J. Quantum Chem. 2006; 106: 863
  • 31 Kakkar R. Zaidi S. Grover R. Int. J. Quantum Chem. 2009; 109: 1058
  • 32 Abu-Eittah RH. Hassan WM. I. Zordok W. J. Struct. Chem. 2015; 56: 628
  • 33 Tarwade V. Dmitrenko O. Bach RD. Fox JM. J. Org. Chem. 2008; 73: 8189
  • 34 Eaton PE. Wicks GE. J. Org. Chem. 1988; 53: 5353
  • 35 Davis MC. Dahl JE. P. Carlson RM. K. Synth. Commun. 2008; 38: 1153
  • 36 Smounig R. Leber S. Kvaskoff D. Kollenz G. Wentrup C. RSC Adv. 2012; 2: 7743
  • 37 Bolm C. Schiffers I. Atodiresei I. Ozcubukcu S. Raabe G. New J. Chem. 2003; 27: 14
  • 38 Beena KP. Suresh R. Rajasekaran A. Manna PK. J. Pharm. Sci. Res. 2016; 8 741
  • 39 Nagarajaiah H. Mukhopadhyay A. Moorthy JN. Tetrahedron Lett. 2016; 57: 5135
  • 40 Koza G. Özcan S. Şahin E. Balci M. Tetrahedron 2009; 65: 5973
  • 41 Tada M. Ohtsu K. Chiba K. Pharm. Bull. 1994; 42: 2167
  • 42 Yılmaz AS. Kaçan M. Tetrahedron 2017; 73: 4509
  • 43 De Coen LM. Jatczak M. Muylaert K. Mangelinckx S. Stevens CV. Synthesis 2015; 47: 1227
  • 44 Lapachev VV. Stadlbauer W. Kappe T. Monatsh. Chem. 1988; 119: 97
  • 45 Kapti T. Dengiz C. Balci M. Synthesis 2017; 49: 1898
  • 46 Robinson JR. Good NE. Can. J. Chem. 1957; 35: 1578
  • 47 Belaroussi R. Bouakher AE. Marchivie M. Massip S. Jarry C. Hakmaoui AE. Guillaumet G. Routier S. Akssira M. Synthesis 2013; 45: 2557
  • 48 Briet N. Brookes MH. Davenport RJ. Galvin FC. A. Gilbert PJ. Mack SR. Sabin V. Tetrahedron 2002; 58: 5761
  • 49 Chuang T.-H. Wu P.-L. J. Chin. Chem. Soc. 2006; 53: 413
  • 50 Boros EE. Kaldor I. J. Heterocycl. Chem. 2015; 52: 302
  • 51 Pouset J.-L. Martin M.-T. Jossang A. Bodo B. Phytochemistry 1995; 39: 735
  • 52 Hayashi K. Choshi T. Chikaraishi K. Oda A. Yoshinaga R. Hatae N. Ishikura M. Hibino S. Tetrahedron 2012; 68: 4274
  • 53 Rochais C. Duc NV. Lescot E. Santos JS. O. Bureau R. Meijer L. Dallemagne P. Rault S. Eur. J. Med. Chem. 2009; 44: 708
  • 54 Ishiuchi K. Kubota T. Ishiyama H. Hayashi S. Shibata T. Kobayashi J. Tetrahedron Lett. 2011; 52: 289
  • 55 Cheng X. Waters SP. Org. Lett. 2013; 15: 4226
  • 56 Pettit GR. Cragg GM. Singh SB. Duke JA. Doubek DL. J. Nat. Prod. 1990; 53: 176
  • 57 Cho Y.-S. Cho C.-G. Tetrahedron 2008; 64: 2172
  • 58 Jung Y.-G. Kang H.-U. Cho H.-K. Cho C.-G. Org. Lett. 2011; 13: 5890
  • 59 Chen F. Su B. Wang Q. Org. Chem. Front. 2014; 1: 674
  • 60 Glushkov VA. Shklyaev YK. Chem. Heterocycl. Compd. 2001; 6: 663
  • 61 Mujde B. Özcan S. Balci M. Phytochem. Lett. 2011; 4: 407
  • 62 Morita S. Irie Y. Saitoh Y. Kohri H. Biochem. Pharmacol. (Amsterdam, Neth.) 1976; 25: 1837
  • 63 Dengiz C. Balci M. Turk. J. Chem. 2011; 37: 220
  • 64 Dalton DM. Rovis T. Org. Lett. 2013; 15: 2346
  • 65 Judd KE. Mahon MF. Caggiano L. Synthesis 2009; 2809
  • 66 Filipponi P. Ostacolo C. Novellino E. Pellicciari R. Gioiello A. Org. Process Res. Dev. 2014; 18: 1345
  • 67 Pang J. Gong H. Xi C. Fan W. Dai Y. Zhang TM. J. Cell Biochem. 2011; 112: 299
  • 68 Sakai R. Higa T. Jefford CW. Bernardinelli G. J. Am. Chem. Soc. 1986; 108: 6404
  • 69 Chau C.-M. Liu K.-M. Sha C.-K. Tetrahedron Lett. 2011; 52: 5068
  • 70 Kale BY. Shinde AD. Sonar SS. Shingate BB. Kumar S. Ghosh S. Venugopal S. Shingare MS. Beilstein J. Org. Chem. 2009; 5: 80
  • 71 Kurangi R. Kinalekar S. Tilve S. Kirtany J. ARKIVOC 2009; xii: 256
  • 72 Stöckigt J. Antonchick AP. Wu F. Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
  • 73 Bonne D. Dekhane M. Zhu J. Angew. Chem. Int. Ed. 2007; 46: 2485
  • 74 Koza G. Karahan E. Balci M. Helv. Chim. Acta 2010; 93: 1698
  • 75 Ergun M. Dengiz C. Ozer MS. Sahin E. Balci M. Tetrahedron 2014; 70: 5993
  • 76 Lee DJ. Kim K. J. Org. Chem. 2004; 69: 4867
  • 77 Horner KE. Karadakov PB. J. Org. Chem. 2013; 78: 8037
    • 78a Mahboobi S. Teller S. Pongratz H. Hufsky H. Sellmer A. Botzki A. Uecker A. Beckers T. Baasner S. Schächtele C. Überall F. Kassack MU. Dove S. Böhmer F.-D. J. Med. Chem. 2002; 45: 1002
    • 78b Mahboobi S. Uecker A. Cénac C. Sellmer A. Eichhorn E. Elz S. Böhmer F.-D. Dove S. Bioorg. Med. Chem. 2007; 15: 2187
  • 79 Koza G. Balci M. Tetrahedron 2011; 67: 8679
  • 80 McCarthy JR. Tetrahedron Lett. 2015; 56: 6846
  • 81 Rezende P. Paioti PH. S. Coelho F. Synth. Commun. 2011; 41: 227
    • 82a Yamatsugu K. Kamijo S. Suto Y. Kanai M. Shibasaki M. Tetrahedron Lett. 2007; 48: 1403
    • 82b Kim CU. Lew W. Williams MA. Liu H. Zhang L. Swaminathan S. Bischofberger N. Chen MS. Mendel DB. Tai CY. Laver WG. Stevens RC. J. Am. Chem. Soc. 1997; 119: 681
  • 83 Kusano G. Orihara S. Tsukamoto D. Shibano M. Coskun M. Guvenc A. Erdurak CS. Chem. Pharm. Bull. 2002; 50: 185
  • 84 Bouillon ME. Meyer HH. Tetrahedron 2007; 63: 2712
  • 85 Jamkhandi CM. Disouza JI. Int. J. Pharm. Pharm. Sci. 2013; 5 (03) 225 ; http://www.ijppsjournal.com/index.htm
  • 86 Singh AS. Kumar D. Mishraa N. Tiwari VK. RSC Adv. 2016; 6: 84512
  • 87 Ray S. Ghosh S. Synth. Commun. 2010; 40: 2377
  • 88 Marsden SP. McGonagle AE. McKeever-Abbas B. Org. Lett. 2008; 10: 2589
  • 89 Lu C. Hu L. Yang G. Chen Z. Curr. Org. Chem. 2012; 16: 2802
  • 90 Ekmekci Z. Balci M. Eur. J. Org. Chem. 2012; 4988
  • 91 Goodridge RJ. Hambley TW. Ridley DD. Aust. J. Chem. 1986; 39: 591
    • 92a Lee S.-G. Zhang YJ. Song CE. Lee JK. Choi JH. Angew. Chem. Int. Ed. 2002; 41: 847
    • 92b López HS. Enciso JE. Ochoa-Terán A. Velazquezc JI. Sarmiento JI. Mendeleev Commun. 2016; 26: 69
  • 93 Zeng R. Chen P.-H. Dong G. ACS Catal. 2016; 6: 969
  • 94 Johnson A. Saunders MJ. Back TG. Org. Biomol. Chem. 2015; 13: 1463
  • 95 Matsuo J.-I. Okano M. Takeuchi K. Tanaka H. Ishibashi H. Tetrahedron: Asymmetry 2007; 18: 1906
    • 96a Naydenova N. Pencheva N. Popova J. Stoyanov N. Lazarova M. Aleksiev B. Farmaco 2002; 57: 189
    • 96b He X. Zhong M. Zhang T. Wua W. Wu Z. Yang J. Xiao Y. Pan Y. Qiu G. Hu X. Eur. J. Med. Chem. 2010; 45: 5870
  • 97 Luo Y.-P. Lin L. Yang G.-F. J. Heterocycl. Chem. 2007; 44: 937
  • 98 Özcan S. Ekmekci Z. Mujde B. Balci M. Turk. J. Chem. 2013; 37: 610
  • 99 Özcan S. Balci M. Tetrahedron 2008; 64: 5531
  • 100 Özcan S. Sahin E. Balci M. Tetrahedron Lett. 2007; 48: 2151
  • 101 Deliömeroǧlu M. Özcan S. Balci M. ARKIVOC 2010; (ii): 148
  • 102 Pradeep P. Ngwira KJ. Reynolds C. Rousseau AL. Lemmerer A. Fernandes MA. Johnson MM. de Koning CB. Tetrahedron 2016; 72: 8417 ; and references therein
  • 103 Powers JJ. Favor DA. Rankin T. Sharma R. Pandit C. Jeganathan A. Maiti SN. Tetrahedron Lett. 2009; 50: 1267
  • 104 Kilikli AA. Dengiz C. Özcan S. Balci M. Synthesis 2011; 3697
  • 105 Walker SR. Carter EJ. Huff BC. Morris JC. Chem. Rev. 2009; 109: 3080
  • 106 Dogan SD. Demirpolat E. Aycan MB. Y. Balci M. Tetrahedron 2015; 71: 252
  • 107 Dake G. Tetrahedron 2006; 62: 3467
  • 108 Arimoto H. Asano S. Uemura D. Tetrahedron Lett. 1999; 40: 3583
  • 109 Nagumo S. Nishida A. Yamazaki C. Matoba A. Murashige K. Kawahara N. Tetrahedron 2002; 58: 4917
  • 110 Yang W. Sun X. Yu W. Rai R. Deschamps JR. Mitchell LA. Jiang C. MacKerell AD. Jr. Xue F. Org. Lett. 2015; 17: 3070
  • 111 Parham WE. Bradsher CK. Acc. Chem. Res. 1982; 15: 300
  • 112 Pashev AS. Burdzhiev NT. Stanoeva EN. Org. Prep. Proced. Int. 2016; 48: 425
  • 113 Quin C. Trnka J. Hay A. Murphy MP. Hartley RC. Tetrahedron 2009; 65: 8154
  • 114 Huard K. Bagley SW. Menhaji-Klotz E. Préville C. Southers JA. Jr. Smith AC. Edmonds DJ. Lucas JC. Dunn MF. Allanson NM. Blaney EL. Garcia-Irizarry CN. Kohrt JT. Griffith DA. Dow RL. J. Org. Chem. 2012; 77: 10050
  • 115 Constantino L. Barlocco D. Curr. Med. Chem. 2006; 13: 65
  • 116 Reddy DR. Ballante F. Zhou NJ. Marshall GR. Eur. J. Med. Chem. 2017; 127: 531 ; and references therein
  • 117 Cagatay D. Özcan S. Sahin E. Balci M. Synthesis 2010; 1365
  • 118 Kandeel MM. Mounir AA. Refaat HM. Kassab AE. J. Chem. Res. 2012; 36: 105
  • 119 Huang Y. Domling A. Chem. Biol. Drug Des. 2010; 76: 130
  • 120 Funke C. Es-Sayed M. de Meijere A. Org. Lett. 2000; 2: 4249
  • 121 Ozer M. Koza G. Sahin E. Balci M. Tetrahedron Lett. 2013; 54: 6553
  • 122 Chuang T.-H. Wu P.-L. Pola S. J. Org. Chem. 2010; 75: 6625
  • 123 Leogane O. Lebel H. Angew. Chem. Int. Ed. 2008; 47: 350
  • 124 Kiriazis A. Aumüller IB. Yli-Kauhaluoma J. Tetrahedron Lett. 2011; 52: 1151
  • 125 Sun V. Rai R. Deschamps JR. MacKerell AD. Faden AI. Xue F. Tetrahedron Lett. 2014; 55: 842
  • 126 Frøyen P. Phosphorus, Sulfur Silicon Relat. Elem. 1993; 81: 37
  • 127 Zhao W. Carreira EM. Org. Lett. 2011; 13: 5084
  • 128 Cokol NK. Kaya S. Balci M. Tetrahedron Lett. 2017; 58: 2732
  • 129 Paquette LA. Kravetz TM. Charumilind P. Tetrahedron 1986; 42: 1789
  • 130 Potter RA. Bowser AM. Yang Y. Madalengoitia JS. Ziller JW. J. Org. Chem. 2013; 78: 11772
  • 131 Doğan SD. Tetrahedron 2017; 73: 2217
  • 132 Ji N.-Y. Liu X.-H. Miao F.-P. Qiao M.-F. Org. Lett. 2013; 15: 2327
  • 133 Levinson AM. Org. Lett. 2014; 16: 4904
  • 134 Abe I. Tomesch JC. Wattanasin S. Prestwich GD. Nat. Prod. Rep. 1994; 11: 279-302
  • 135 Roy A. Roberts FG. Wilderman PR. Zhou K. Peters RJ. Coates RM. J. Am. Chem. Soc. 2007; 129: 12453
  • 136 Ranatunga S. Liyanage W. Del Valle JR. J. Org. Chem. 2010; 75: 5113
  • 137 Langloisl M. Soulierl JL. Rampillonl V. Gallaisl C. Brkmontl B. Shenl S. Eur. J. Med. Chem. 1994; 29: 925
  • 138 Huang H. Lu C. Chen X. Yang G. J. Heterocycl. Chem. 2007; 44: 1421