Synthesis 2017; 49(08): 1746-1756
DOI: 10.1055/s-0036-1589492
short review
© Georg Thieme Verlag Stuttgart · New York

Methoxatin as a Target in Total Synthesis

Birte Schröder
Faculty of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany   Email: [email protected]
,
Tanja Gaich*
Faculty of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 04 October 2016

Accepted after revision: 24 January 2017

Publication Date:
23 March 2017 (online)


Abstract

Methoxatin is a redox co-factor with a unique structure featuring a central 1,2-benzoquinone, annulated to an electron-poor pyridine and an electron-poor pyrrole ring. This exceptional molecular structure leads to the unusual biological function of methoxatin, which therefore plays a significant role in metabolism. Hence, many total syntheses providing access to this remarkable natural product were published soon after the structure was elucidated.

1 Introduction

2 Structural Analysis

3 Biological Function

3.1 Biochemical Role

3.2 Biosynthesis

3.3 Biochemical Mechanism

4 Completed Total Syntheses

4.1 Hendrickson Group (A + C → C)

4.2 Büchi Group (BC → ABC)

4.3 Boger Group (BC → ABC)

4.4 Weinreb Group (BC → ABC)

4.5 Rees Group (BC → ABC)

4.6 Corey and Martin Group (BC → ABC)

5 Conclusion

 
  • References

  • 1 Szymona M, Doudoroff M. J. Gen. Microbiol. 1960; 22: 167
  • 2 Anthony C, Zatman LJ. Biochem. J. 1967; 104: 960
  • 3 Hauge JG. J. Biol. Chem. 1964; 239: 3630
  • 4 Westerling J, Frank J, Duine JA. Biochem. Biophys. Res. Commun. 1979; 87: 719
  • 5 Salisbury SA, Forrest HS, Cruse WB. T, Kennard O. Nature (London) 1979; 280: 843
  • 6 Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O. FEBS Lett. 1981; 130: 179
    • 7a Kasahara T, Kato T. Nature (London) 2003; 422: 832
    • 7b Kasahara T, Kato T. Nature (London) 2005; 433: E11
  • 8 McIntire WS. Annu. Rev. Nutr. 1998; 18: 145
  • 9 Steinberg F, Stites TE, Anderson P, Storms D, Chan I, Eghbali S, Rucker R. Exp. Biol. Med. 2003; 228: 160
  • 10 Felton LM, Anthony C. Nature (London) 2005; 433: E10
  • 11 Rucker R, Storms D, Sheets A, Tchaparian E, Fascetti A. Nature (London) 2005; 433: E10-E11
  • 12 Warburg O, Christian W. Biochem. Z. 1938; 298: 150
  • 13 Fieser LF, Fieser M. Organische Chemie . Verlag Chemie; Weinheim: 1965: 1675
  • 14 Itoh S, Kawakami H, Fukuzumi S. Biochemistry 1998; 37: 6562
  • 15 Mutzel A, Görisch H. Agric. Biol. Chem. 1991; 55: 1721
  • 16 Goodwin PM, Anthony C. Adv. Microb. Physiol. 1998; 40: 1
  • 17 Duine JA, Jongejan JA. Annu. Rev. Biochem. 1989; 58: 403
  • 18 Anthony C. Antioxid. Redox Signaling 2001; 3: 757
  • 19 Shinobu I, Yutaka K, Yoshiki O, Toshio A. Bull. Chem. Soc. Jpn. 1986; 59: 1907
  • 20 Rucker R, Chowanadisai W, Nakano M. Altern. Med. Rev. 2009; 14: 268
  • 21 Ohwada K, Takeda H, Yamazaki M, Nakano M, Shimomura M, Fukui K, Urano S. J. Clin. Biochem. Nutr. 2008; 42: 29
  • 22 Steinberg FM, Gershwin ME, Rucker RB. J. Nutr. 1994; 124: 744
  • 23 Ouchi A, Nakano M, Nagaoka S, Mukai K. J. Agric. Food Chem. 2009; 57: 450
  • 24 Tao R, Karliner JS, Simonis U, Zheng J, Zhang J, Honbo N. Biochem. Biophys. Res. Commun. 2007; 363: 257
  • 25 Zhu BQ, Zhou HZ, Teerlink JR, Karliner JS. Cardiovasc. Drugs Ther. 2004; 18: 421
  • 26 Zhu BQ, Simonis U, Cecchini G, Li HZ, Teerlink JR. Cardiovasc. Pharmacol. Ther. 2006; 11: 119
  • 27 Chowanadisai W, Bauerly K, Tchaparian E, Rucker RB. FASEB J. 2007; 21: 854
  • 28 Misra HS, Khairnar NP, Barik A, Priyadarsini KI, Mohan H, Apte AK. FEBS Lett. 2004; 578: 26
  • 29 Misra HS, Rajpurohit YS, Khairnar PN. J. Biosci. 2012; 37: 313
  • 30 Hobara N, Watanabe A, Kobayashi M, Tsuji T, Gomita Y, Araki Y. Pharmacology 1988; 37: 264
  • 31 Zhang Q, Ding M, Cao Z, Zhang J, Ding F, Ke K. Neurochem. Res. 2013; 38: 1661
  • 32 Zhang Q, Ding M, Gao XR, Ding F. Genet. Mol. Res. 2012; 11: 2652
  • 33 Zhang Q, Shen M, Ding M, Shen D, Ding F. Toxicol. Appl. Pharmacol. 2011; 252: 62
  • 34 Qin J, Wu M, Yu S, Gao X, Zhang J, Dong X, Ji J, Zhang Y, Zhou L, Zhang Q, Ding F. Toxicol. Lett. 2015; 238: 70
  • 35 Puehringer S, Metlitzky M, Schwarzenbacher R. BMC Biochem. 2008; 9: 8
  • 36 Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I, Postma PW. J. Bacteriol. 1995; 177: 5088
  • 37 Magnusson OT, Toyama H, Saeki M, Rojas A, Reed JC, Liddington RC, Klinman JP, Schwarzenbacher R. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 7913
  • 38 Magnusson OT, Toyama H, Saeki M, Schwarzenbacher R, Klinman JP. J. Am. Chem. Soc. 2004; 126: 5342
  • 39 Anthony C. Biochem. J. 1996; 320: 697
  • 40 Frank JJ, Dijkstra M, Duine JA, Balny C. Eur. J. Biochem. 1988; 174: 331
  • 41 Frank JJ, van Krimpen SH, Verwiel PE, Jongejan JA, Malder AC, Duine JA. Eur. J. Biochem. 1989; 184: 187
  • 42 Olisthoorn AJ, Duine JA. Biochemistry 1998; 37: 13854
  • 43 Zheng YJ, Xia Z.-X, Chen Z.-W, Mathews FC, Bruice TC. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 11881
  • 44 Anthony C. Arch. Biochem. Biophys. 2004; 428: 2
  • 45 Afolabi RP, Mohammed F, Amaratunga K, Majekodunmi O, Dales LS, Gill R, Thompson D, Cooper BJ, Wood PS, Goodwin MP, Anthony C. Biochemistry 2001; 40: 9799
  • 46 Oubrie A, Rozeboom HJ, Dijkstra BW. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 432
  • 47 Oubrie A, Dijkstra WB. Protein Sci. 2000; 9: 1265
  • 48 Corey EJ, Tramontano A. J. Am. Chem. Soc. 1981; 103: 5599
    • 49a Gainor JA, Weinreb SM. J. Org. Chem. 1981; 46: 4317
    • 49b Gainor JA, Weinreb SM. J. Org. Chem. 1982; 47: 2833
    • 50a Hendrickson JB, deVries JG. J. Org. Chem. 1982; 47: 1148
    • 50b Hendrickson JB, deVries JG. J. Org. Chem. 1985; 50: 1688
  • 51 Büchi G, Botkin JH, Lee GC. M, Yakushijin K. J. Am. Chem. Soc. 1985; 107: 5555
  • 52 Glinkermann CM, Boger DL. J. Am. Chem. Soc. 2016; 138: 12408
  • 53 Mackenzie AR, Moody CJ, Rees CW. J. Chem. Soc., Chem. Commun. 1983; 1372
  • 54 Jongejan JA, Bezemer RP, Duine JA. Tetrahedron Lett. 1988; 29: 3709
  • 55 Martin P, Steiner E, Auer K, Winkler T. Helv. Chim. Acta 1993; 76: 1667
  • 56 Kempf JV, Gopal D, Stalzer W. WO 2006102642, 2006
  • 57 Puthiaparampil TT, Sambasivam G, Govinda RG, Koramangala RC. US 2014364613, 2014
    • 58a Böttinger C. Justus Liebigs Ann. Chem. 1877; 188: 329
    • 58b Efimovsky O, Rumpf P. Bull. Soc. Chim. Fr. 1954; 648
  • 59 Fournari P, Farnier M, Fournier C. Bull. Soc. Chim. Fr. 1972; 283
  • 60 Zinin N. J. Prakt. Chem. 1842; 27: 140
  • 61 Kolar AJ, Olsen RK. Synthesis 1977; 457
  • 62 Pfitzinger W. J. Prakt. Chem. 1886; 33: 100
  • 63 Kozikowski AP, Floyd WC. Tetrahedron Lett. 1978; 19: 19
  • 64 Japp FR, Klingemann F. Ber. Dtsch. Chem. Ges. 1887; 20: 2942
  • 65 Reissert A. Ber. Dtsch. Chem. Ges. 1897; 30: 1030
  • 66 Doebner O, Miller Wv. Ber. Dtsch. Chem. Ges. 1881; 14: 2812
  • 67 Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241