Synthesis 2017; 49(04): 822-829
DOI: 10.1055/s-0036-1589476
short review
© Georg Thieme Verlag Stuttgart · New York

Chemo- and Regioselective Oxidation of Secondary Alcohols in Vicinal Diols

Niek N. H. M. Eisink
Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands   Email: [email protected]   Email: [email protected]
,
Adriaan J. Minnaard*
Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands   Email: [email protected]   Email: [email protected]
,
Martin D. Witte*
Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 09 November 2016

Accepted after revision: 21 December 2016

Publication Date:
09 January 2017 (online)


Abstract

Oxidation of secondary hydroxyl groups in vicinal diols enables the straightforward functionalization of biomolecules and biomaterials. The resulting hydroxy ketone can for example be used to form derivatives, such as the epimeric alcohol and imines, and it may be employed for chemical probe synthesis. Regioselectivity becomes an essential factor when this strategy is applied to compounds containing multiple hydroxyl groups, such as carbohydrates. Large advances have been made in this field in the past decade, which has led to the development of novel methodologies that enable selective oxidation of secondary hydroxyl groups of 1,2-diols in complex molecules which have complementary regioselectivities. We here discuss these recent advances as well as some of the limitations. Future research should focus on addressing these issues, which will eventually lead to methods for the chemo- and regioselective oxidation of complex oligosaccharides.

1 Introduction

2 General Methods To Oxidize Simple Vicinal Diols

3 Chelation-Controlled Oxidation

4 Applications

5 Conclusions and Future Directions

 
  • References

  • 1 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
  • 2 Trincado M, Kühlein K, Grützmacher H. Chem. Eur. J. 2011; 17: 11905
  • 3 de Nooy AE. J, Besemer AC, van Bekkum H. Tetrahedron 1995; 51: 8023
  • 4 Mizoguchi H, Uchida T, Ishida K, Katsuki T. Tetrahedron Lett. 2009; 50: 3432
  • 5 Tomioka H, Takai K, Oshima K, Nozaki H. Tetrahedron Lett. 1981; 22: 1605
  • 6 Tietze LF, Henke S, Bärtels C. Tetrahedron 1988; 44: 7145
  • 7 Bovicelli P, Lupattelli P, Sanetti A, Mincione E. Tetrahedron Lett. 1994; 35: 8477
  • 8 Arterburn JB. Tetrahedron 2001; 57: 9765
  • 9 David S, Thieffry A. J. Chem. Soc., Perkin Trans. 1 1979; 1568
  • 10 Gogoi P, Sarmah GK, Konwar D. J. Org. Chem. 2004; 69: 5153
  • 11 Chaudhuri MK, Dehury SK, Dhar SS, Sinha UB. Synth. Commun. 2004; 34: 4077
  • 12 Chaudhuri MK, Dehury SK, Hussain S, Duarah A, Gogoi N. Org. Prep. Proced. Int. 2006; 38: 331
  • 13 Chaudhuri MK, Dehury SK, Hussain S, Duarah A, Gogoi N, Lakshmi Kantam M. Adv. Synth. Catal. 2005; 347: 1349
  • 14 Martín SE, Garrone A. Tetrahedron Lett. 2003; 44: 549
  • 15 Lenze M, Bauer EB. Chem. Commun. 2013; 49: 5889
  • 16 Crotti C, Farnetti E. J. Mol. Catal. A: Chem. 2015; 396: 353
  • 17 Wang J, Yan L, Qian G, Li S, Yang K, Liu H, Wang X. Tetrahedron 2007; 63: 1826
  • 18 Plietker B. Org. Lett. 2004; 6: 289
  • 19 Weber MA, Ford PC. J. Mol. Catal. A: Chem. 2016; 416: 81
  • 20 Yamada YM. A, Jin CK, Uozumi Y. Org. Lett. 2010; 12: 4540
  • 21 Surendra K, Krishnaveni NS, Reddy MA, Nageswar YV. D, Rao KR. J. Org. Chem. 2003; 68: 2058
  • 22 Kuhakarn C, Kittigowittana K, Pohmakotr M, Reutrakul V. Tetrahedron 2005; 61: 8995
  • 23 Attoui M, Vatèle J.-M. Synlett 2014; 25: 2923
  • 24 Komagawa H, Maejima Y, Nagano T. Synlett 2016; 27: 789
  • 25 Jain SL, Sharma VB, Sain B. Tetrahedron 2006; 62: 6841
  • 26 Ma X, Li Z, Liu F, Cao S, Rao H. Adv. Synth. Catal. 2014; 356: 1741
  • 27 Tsuda Y, Hanajima M, Matsuhira N, Okuno Y, Kanemitsu K. Chem. Pharm. Bull. 1989; 37: 2344
  • 28 Liu H.-M, Sato Y, Tsuda Y. Chem. Pharm. Bull. 1993; 41: 491
  • 29 Maki T, Fukae K, Harasawa H, Ohishi T, Matsumura Y, Onomura O. Tetrahedron Lett. 1998; 39: 651
  • 30 Maki T, Iikawa S, Mogami G, Harasawa H, Matsumura Y, Onomura O. Chem. Eur. J. 2009; 15: 5364
  • 31 William JM, Kuriyama M, Onomura O. RSC Adv. 2013; 3: 19247
  • 32 Muramatsu W. Org. Lett. 2014; 16: 4846
  • 33 William JM, Kuriyama M, Onomura O. Adv. Synth. Catal. 2014; 356: 934
  • 34 Sakaguchi S, Kikuchi D, Ishii Y. Bull. Chem. Soc. Jpn. 1997; 70: 2561
  • 35 William JM, Kuriyama M, Onomura O. Tetrahedron Lett. 2014; 55: 6589
  • 36 Nishimura T, Onoue T, Ohe K, Uemura S. J. Org. Chem. 1999; 64: 6750
  • 37 ten Brink GJ, Arends IW. C. E, Sheldon RA. Science (Washington, D. C.) 2000; 287: 1636
  • 38 Schultz MJ, Hamilton SS, Jensen DR, Sigman MS. J. Org. Chem. 2005; 70: 3343
  • 39 Steinhoff BA, Guzei IA, Stahl SS. J. Am. Chem. Soc. 2004; 126: 11268
  • 40 Bettucci L, Bianchini C, Oberhauser W, Hsiao TH, Lee HM. J. Mol. Catal. A: Chem. 2010; 322: 63
  • 41 Bettucci L, Bianchini C, Filippi J, Lavacchi A, Oberhauser W. Eur. J. Inorg. Chem. 2011; 2011: 1797
  • 42 Conley NR, Labios LA, Pearson DM, McCrory CC. L, Waymouth RM. Organometallics 2007; 26: 5447
  • 43 Painter RM, Pearson DM, Waymouth RM. Angew. Chem. Int. Ed. 2010; 49: 9456
  • 44 Chung K, Banik SM, De Crisci AG, Pearson DM, Blake TR, Olsson JV, Ingram AJ, Zare RN, Waymouth RM. J. Am. Chem. Soc. 2013; 135: 7593
  • 45 De Crisci AG, Chung K, Oliver AG, Solis-Ibarra D, Waymouth RM. Organometallics 2013; 32: 2257
  • 46 Jäger M, Hartmann M, de Vries JG, Minnaard AJ. Angew. Chem. Int. Ed. 2013; 52: 7809
  • 47 Zhang Z, Huang S, Zhang Z, Su Y, Ren Y. WO 2016041470, 2016 ; Sglt-2 inhibitors.
  • 48 Eisink NN. H. M, Lohse J, Witte MD, Minnaard AJ. Org. Biomol. Chem. 2016; 14: 4859
  • 49 Chung K, Waymouth RM. ACS Catal. 2016; 6: 4653
  • 50 Jumde VR, Eisink NN. H. M, Witte MD, Minnaard AJ. J. Org. Chem. 2016; 81: 11439
  • 51 Eisink, N. N. H. M.; Witte, M. D.; Minnaard, A. J., unpublished results.
  • 52 Pearson DM, Conley NR, Waymouth RM. Organometallics 2011; 30: 1445
  • 53 Armenise N, Tahiri N, Eisink NN. H. M, Denis M, Jäger M, De Vries JG, Witte MD, Minnaard AJ. Chem. Commun. 2016; 52: 2189
  • 54 Witte MD, Horst D, Wiertz EJ. H. J, van der Marel GA, Overkleeft HS. J. Org. Chem. 2009; 74: 605
  • 55 Wu Z, Jäger M, Buter J, Minnaard AJ. Beilstein J. Org. Chem. 2013; 9: 2374
  • 56 Minnaard AJ, Jäger M, Gottumakkala AL. N. R, de Vries JG, Bastian AA, Hermann A. WO 2013191549, 2013 Selective oxidation of carbohydrates..