Synlett 2018; 29(05): 673-677
DOI: 10.1055/s-0036-1589157
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of 1-Monosubstituted 1,2,3-Triazoles from Propargyl Alcohol

Chunmei Han
a  Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Email: chenzhen69@qq.com
,
Suping Dong
a  Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Email: chenzhen69@qq.com
,
Wensheng Zhang
b  School of Science and Technology, Jiaozuo Teachers’ College, Jiaozuo 454001, P. R. of China
,
Zhen Chen*
a  Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Email: chenzhen69@qq.com
› Author Affiliations
The authors would like to thank the National Natural Science Foundation of China (No. 51464021) for financial support.
Further Information

Publication History

Received: 11 October 2017

Accepted after revision: 29 November 2017

Publication Date:
31 January 2018 (online)

Abstract

A one-pot synthesis of 1-monosubstituted-1,2,3-triazoles from propargyl alcohol and various aryl azides was achieved. This simple method provides concise and efficient access to various 1-monosubstituted 1,2,3-triazole derivatives through a three-step one-pot ­sequence in good to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Shaikh MH. Subhedar DD. Khan FA. K. Sangshetti JN. Shingate BB. Chin. Chem. Lett. 2016; 27: 295
    • 1b Thirumurugan P. Matosiuk D. Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 2a Kennedy ZC. Barrett CA. Warner MG. Langmuir 2017; 33: 2790
    • 2b Kantheti S. Narayan R. Raju KV. S. N. RSC Adv. 2015; 5: 3687
    • 2c Chu C. Liu R. Chem. Soc. Rev. 2011; 40: 2177
    • 3a Dheer D. Singh V. Shankar R. Bioorg. Chem. 2017; 71: 30
    • 3b Johansson J. Beke-Somfai T. Stålsmeden A. Kann N. Chem. Rev. 2016; 116: 14726
    • 3c Sheng C. Zhang W. Curr. Med. Chem. 2011; 18: 733
    • 3d Jiang Y. Kuang C. Mini-Rev. Med. Chem. 2013; 13: 713
    • 4a Chen Z. Liu Z. Cao G. Li H. Ren H. Adv. Synth. Catal. 2017; 359: 202
    • 4b Lee D. Yoo EJ. Org. Lett. 2015; 17: 1830
    • 4c Shi S. Kuang C. J. Org. Chem. 2014; 79: 6105
    • 4d Liu Y. Zhao F. Zhou H. Xie K. Jiang Y. J. Chem. Sci. (Berlin, Ger.) 2017; 129: 289
    • 4e Zhao F. Liu Y. Yang S. Xie K. Jiang Y. Org. Chem. Front. 2017; 4: 1112
    • 4f Liu Y. Zhang W. Xie K. Jiang Y. Synlett 2017; 28: 1496
  • 5 Röhrig UF. Majjigapu SR. Grosdidier A. Bron S. Stroobant S. Pilotte L. Colau D. Vogel P. Van den Eynde BJ. Zoete V. Michielin O. J. Med. Chem. 2012; 55: 5270
  • 6 Totir MA. Padayatti PS. Helfand MS. Carey MP. Bonomo RA. Carey PR. van den Akker F. Biochemistry 2006; 45: 11895
  • 7 Bian J. Zhang L. Han Y. Wang C. Zhang L. Curr. Med. Chem. 2015; 22: 2065
  • 8 El Akri K. Bougrin K. Balzarini J. Faraj A. Benhida R. Bioorg. Med. Chem. Lett. 2007; 17: 6656
  • 9 Huisgen R. Proc. Chem. Soc., London 1961; 357
  • 10 Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 11a Zheng X. Wan Y. Ling F. Ma C. Org. Lett. 2017; 19: 3859
    • 11b Quan X. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Org. Lett. 2014; 16: 5728
    • 11c Jiang Y. Kuang C. Huaxue Jinzhan 2012; 24: 1983
  • 12 Chan TR. Hilgraf R. Sharpless KB. Fokin VV. Org. Lett. 2004; 6: 2853
  • 13 Orgueira HA. Fokas D. Isome Y. Chan PC.-M. Baldino CM. Tetrahedron Lett. 2005; 46: 2911
    • 14a Wang D. Etienne L. Echeverria M. Moya S. Astruc D. Chem. Eur. J. 2014; 20: 4047
    • 14b Pathigoolla A. Pola RP. Sureshan KM. Appl. Catal., A 2013; 453: 151
  • 15 Ramachary DB. Shashank AB. Karthik SS. Angew. Chem. Int. Ed. 2014; 53: 10420
    • 16a Kwok SK. Fotsing JR. Fraser RJ. Rodionov VO. Fokin VV. Org. Lett. 2010; 12: 4217
    • 16b Cheng X.-Z. Liu W. Huang Z.-D. Kuang C.-X. Chin. Chem. Lett. 2013; 24: 764
    • 17a González-Calderón D. Santillán-Iniesta I. González-González CA. Fuentes-Benítes A. González-Romero C. Tetrahedron Lett. 2015; 56: 514
    • 17b Luo Z. Zhao Y. Xu F. Ma C. Xu X.-M. Zhang X.-M. Chin. Chem. Lett. 2014; 25: 1346
    • 17c Chen Z. Yan Q. Liu Z. Xu Y. Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 13324
  • 18 Zarei A. Tetrahedron Lett. 2012; 53: 5176
  • 19 Kumar BS. P. A. Reddy KH. V. Karnakar K. Satish G. Nageswar YV. D. Tetrahedron Lett. 2015; 56: 1968
  • 20 Chen Y. Zhuo Z.-J. Cui D.-M. Zhang C. J. Organomet. Chem. 2014; 749: 215
  • 21 Guo S. Lim MH. Huynh HV. Organometallics 2013; 32: 7225
    • 22a de Oliviera RN. Sinou D. Srivastava RM. J. Carbohydr. Chem. 2006; 25: 407
    • 22b Wu L. Yan B. Yang G. Chen Y. Hetero­cycl. Commun. 2013; 19: 397
    • 22c Wu L.-Y. Xie Y.-X. Chen Z.-S. Niu Y.-N. Liang Y.-M. Synlett 2009; 1453
    • 23a Andersen J. Bolvig S. Liang X. Synlett 2005; 2941
    • 23b Chan DC. M. Laughton CA. Queener SF. Stevens MF. G. Bioorg. Med. Chem. 2002; 10: 3001
    • 23c Fletcher JT. Walz SE. Keeney ME. Tetrahedron Lett. 2008; 49: 7030
    • 23d Jiang Y. Kuang C. Yang Q. Tetrahedron 2011; 67: 289
    • 23e Jiang Y. Kuang C. Yang Q. Synlett 2009; 3163
    • 24a Häbich D. Barth W. Rösner M. Heterocycles 1989; 29: 2083
    • 24b Kadaba PK. J. Org. Chem. 1992; 57: 3075
    • 24c Sasaki T. Eguchi S. Yamaguchi M. Esaki T. J. Org. Chem. 1981; 46: 1800
    • 24d Huang Z. Wang R. Sheng S. Zhou R. Cai M. React. Funct. Polym. 2013; 73: 224
    • 25a Naud J. Lemke C. Goudreau N. Beaulieu E. White PD. Llinàs-Brunet M. Forgione P. Bioorg. Med. Chem. Lett. 2008; 18: 3400
    • 25b Yang Q. Jiang Y. Kuang C. Helv. Chim. Acta 2012; 95: 448
    • 25c Xu M. Kuang C. Wang Z. Yang Q. Jiang Y. Synthesis 2011; 223
    • 25d Kolarovič A. Schnürch M. Mihovilovic MD. J. Org. Chem. 2011; 76: 2613
    • 26a Zhao F. Chen Z. Ma X. Huang S. Jiang Y. Tetrahedron Lett. 2017; 58: 614
    • 26b Zhao F. Chen Z. Liu Y. Xie K. Jiang Y. Eur. J. Org. Chem. 2016; 5971
    • 26c Zhao F. Tian W.-H. Luo F. Cheng H.-L. Jiang Y.-B. Chen Z. Synth. Commun. 2016; 46: 1678
    • 26d Zhao F. Chen Z. Xie K. Yang R. Jiang Y.-B. Chin. Chem. Lett. 2016; 27: 109
  • 27 1-Substituted 1H-1,2,3-Triazoles; General Procedure Aryl azide 1 (0.3 mmol), propargyl alcohol (2; 0.36 mmol), CuI (0.03 mmol), NaAsc (0.06 mmol), and MeCN (2 mL) were added to a 15 mL pressure tube. The tube was sealed and the mixture was stirred at 80 °C for 5 h until the reaction was complete. KMnO4 (0.75 mmol) and Na2CO3 (0.45 mmol) were added, and the mixture was stirred at 80 °C for 8 h. Ag2O (0.03 mmol) and K2S2O7 (0.6 mmol) were then added, and the mixture was heated at 100 °C for 24 h until the reaction was complete (TLC). H2O (25 mL) was added, and the mixture was extracted with EtOAc (3 × 20 mL). The organic layers were combined, washed with brine (3 × 5 mL), dried (Na2SO4), and concentrated under reduced pressure to afford a crude product that was purified by column chromatography [silica gel, EtOAc–PE (1:3)]. 1-(4-Tolyl)-1H-1,2,3-triazole (3a) White solid; yield: 42 mg (88%); mp 85.5–86.5 °C. 1H NMR (500 MHz, CDCl3): δ = 7.96 (d, J = 0.8 Hz, 1 H), 7.83 (s, 1 H), 7.62 (d, J = 8.4 Hz, 2 H), 7.32 (d, J = 8.2 Hz, 2 H), 2.43 (s, 3 H). 1-(2-Methoxyphenyl)-1H-1,2,3-triazole (3f) White solid; yield: 46 mg (87%); mp 81–82.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 1.0 Hz, 1 H), 7.82 (d, J = 1.0 Hz, 1 H), 7.79 (dd, J = 7.9, 1.7 Hz, 1 H), 7.46–7.41 (m, 1 H), 7.14–7.08 (m, 2 H), 3.89 (s, 3 H). 4-(1H-1,2,3-Triazol-1-yl)benzenesulfonamide (3g) White solid; yield: 53 mg (79%); mp 187–187.5 °C. 1H NMR (500 MHz, CDCl3): δ = 8.93 (s, 1 H), 8.14 (d, J = 8.6 Hz, 2 H), 8.04 (d, J = 6.1 Hz, 3 H), 7.55 (s, 2 H). 1-(3-Chlorophenyl)-1H-1,2,3-triazole (3m) White solid; yield: 40 mg (75%); mp 91.6–92.4 °C. 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 1.1 Hz, 1 H), 7.86 (d, J = 1.0 Hz, 1 H), 7.80 (t, J = 2.0 Hz, 1 H), 7.66 (ddd, J = 7.9, 2.0, 1.3 Hz, 1 H), 7.51–7.40 (m, 2 H).