Synthesis 2018; 50(04): 711-722
DOI: 10.1055/s-0036-1589155
short review
© Georg Thieme Verlag Stuttgart · New York

tert-Butyl Nitrite (TBN) as a Versatile Reagent in Organic Synthesis

Pengfei Li
a  College of Chemistry & Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu 730070, P. R. of China
,
Xiaodong Jia*
a  College of Chemistry & Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu 730070, P. R. of China
b  School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, P. R. of China   Email: [email protected]   Email: [email protected]
› Author Affiliations
We thank the Natural Science Foundation of China (NSFC, No. 21362030 and 21562038) for supporting our research.
Further Information

Publication History

Received: 27 October 2017

Accepted after revision: 22 November 2017

Publication Date:
14 December 2017 (online)


Abstract

tert-Butyl nitrite (TBN) is an important metal-free reagent that is widely applied in various organic transformations. Besides its traditional applications in nitrosation and diazotization, its ability to activate molecular oxygen to enable the initiation of radical reactions, including nitration, oximation, oxidation, and so on, has attracted extensively attention in the past decade. This review highlights recent advances in this field to promote further exploration of this versatile compound.

1 Introduction

2 Reactions Involving TBN

2.1 Nitrosation

2.2 Oximation

2.3 Diazotization

2.4 Nitration

2.5 Oxidation

2.6 Other Reactions

3 Conclusion and Perspective

 
  • References

    • 1a Hartung WH. Munch JC. J. Am. Chem. Soc. 1929; 51: 2262
    • 1b Pradhan BP. De S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1982; 21: 823
    • 2a Dai J.-J. Fang C. Xiao B. Yi J. Xu J. Liu Z.-J. Lu X. Liu L. Fu Y. J. Am. Chem. Soc. 2013; 135: 8436
    • 2b Wang X. Xu Y. Mo F.-Y. Jin G.-J. Qiu D. Feng J.-J. Ye Y.-X. Zhang S.-G. Zhang Y. Wang J.-B. J. Am. Chem. Soc. 2013; 135: 10330
    • 2c Danoun G. Bayarmagnai B. Grünberg M.-F. Gooßen L.-J. Angew. Chem. Int. Ed. 2013; 52: 7972
    • 2d Qiu D. Meng H. Jin L. Wang S. Tang S.-G. Wang X. Mo F.-Y. Zhang Y. Wang J.-B. Angew. Chem. Int. Ed. 2013; 52: 11581
    • 2e Crisóstomo F.-P. Martín T. Carrillo R. Angew. Chem. Int. Ed. 2014; 53: 2181
    • 2f Akama T. Baker S.-J. Zhang Y.-K. Hernandez V. Zhou H. Sanders V. Freund Y. Kimura R. Maples K.-R. Plattner J.-J. Bioorg. Med. Chem. Lett. 2009; 19: 2129
    • 2g Piccionello A.-P. Pace A. Pierro P. Pibiri I. Buscemi S. Vivona N. Tetrahedron 2009; 65: 119
    • 2h Ahmed-Omer B. Barrow D.-A. Wirth T. Tetrahedron Lett. 2009; 50: 3352
    • 2i Chakraborty A. Jana S. Kibriya G. Dey A. Hajra A. RSC Adv. 2016; 6: 34146
    • 3a Koley D. Colón O.-C. Savinov S.-N. Org. Lett. 2009; 11: 4172
    • 3b Wu X.-F. Schranck J. Neumann H. Beller M. Chem. Commun. 2011; 47: 12462
    • 3c Kilpatrick B. Heller M. Arns S. Chem. Commun. 2013; 49: 514
    • 3d Taniguchi T. Yajima A. Ishibashi H. Adv. Synth. Catal. 2011; 353: 2643
    • 3e Taniguchi T. Sugiura Y. Hatta T. Yajima A. Ishibashi H. Chem. Commun. 2013; 49: 2198
    • 4a Barton DH. R. Beaton JM. Geller LE. Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 4b Barton DH. R. Beaton JM. Geller LE. Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
    • 5a Liu Y. Zhang J.-L. Song R.-J. Qian P.-C. Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 9017
    • 5b Shen T. Yuan Y.-Z. Jiao N. Chem. Commun. 2014; 50: 554
    • 5c Sau P. Santra SK. Rakshit A. Patel BK. J. Org. Chem. 2017; 82: 6358
    • 6a Dutta U. Maity S. Kancherla R. Maiti D. Org. Lett. 2014; 16: 6302
    • 6b Yan H. Rong G.-G. Liu D. Zheng Y. Chen J. Mao J.-C. Org. Lett. 2014; 16: 6306
    • 6c Yan H. Mao J.-C. Rong G.-G. Liu D.-F. Zheng Y. He Y. Green Chem. 2015; 17: 2723
    • 6d Yang X.-H. Ouyang X.-H. Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2015; 357: 1161
    • 6e Hao X.-H. Gao P. Song X.-R. Qiu Y.-F. Jin D.-P. Liu X.-Y. Liang Y.-M. Chem. Commun. 2015; 51: 6839
    • 7a Gowenlock BG. Richter-Addo GB. Chem. Rev. 2004; 104: 3315
    • 7b Culotta E. Koshland DE. Jr. Science (Washington, D. C.) 1992; 258: 1862
    • 7c Rival Y. Grassy G. Michel G. Chem. Pharm. Bull. 1992; 40: 1170
    • 7d Teulade JC. Grassy G. Girard JP. Chapat JP. de Simeon de Buochberg M. Eur. J. Med. Chem. 1978; 13: 271
    • 7e Bouhrira K. Ouahiba F. Zerouali D. Hammouti B. Zertoubi M. Benchat N. E-J. Chem. 2010; 7: S35; http://www.hindawi.com/journals/jchem/
    • 10a N-Nitrosamines, ACS Symposium Series No. 101. Anselme J.-P. American Chemical Society; Washington DC: 1979
    • 10b Zolfigol MA. Shirini F. Choghamarani AG. Taqian-Nasab A. Keypour H. Salehzadeh S. J. Chem. Res., Synop. 2000; 420
    • 10c Olah G. Noszkwo L. Kuhn S. Szelke M. Chem. Ber. 1956; 89: 2374
    • 10d Zolfigol MA. Zebarjadian MH. Chehardoli G. Keypour H. Salehzadeh S. Shamsipur M. J. Org. Chem. 2001; 66: 3619
    • 10e Castedo L. Riguera R. Vazquez MP. J. Chem. Soc., Chem. Commun. 1983; 301
    • 10f White EH. J. Am. Chem. Soc. 1955; 77: 6008
    • 10g Challis BC. Kyrtopoulos SA. J. Chem. Soc., Perkin Trans. 1 1979; 299
    • 11a Chaudhary P. Gupta S. Muniyappan N. Sabiah S. Kandasamy J. Green Chem. 2016; 18: 2323
    • 11b Yedage S.-L. Bhanage B.-M. J. Org. Chem. 2017; 82: 5769
    • 11c Monir K. Ghosh M. Jana S. Mondal P. Majee A. Hajra A. Org. Biomol. Chem. 2015; 13: 8717
    • 12a Prateeptongkum S. Jovel I. Jackstell R. Vogl N. Weckbeckerb C. Beller M. Chem. Commun. 2009; 1990
    • 12b Gao X. Zhang F. Deng G.-J. Yang L. Org. Lett. 2014; 16: 3364
    • 12c Peng X.-X. Deng Y.-J. Yang X.-L. Zhang L. Yu W. Han B. Org. Lett. 2014; 16: 4650
    • 12d Zhang X.-W. Xiao Z.-F. Zhuang Y.-J. Wang M.-M. Kang Y.-B. Adv. Synth. Catal. 2016; 358: 1942
    • 12e Chen F. Zhou N.-N. Zhan J.-L. Han B. Yu W. Org. Chem. Front. 2017; 4: 135
  • 13 Liang Y.-F. Li X.-Y. Wang X.-Y. Yan Y.-P. Feng P. Jiao N. ACS Catal. 2015; 5: 1956
    • 14a Hamasaki A. Kuwada H. Tokunaga M. Tetrahedron Lett. 2012; 53: 811
    • 14b Shen Z.-L. Chen M. Fang T.-T. Li M.-C. Mo W.-M. Hu B.-X. Sun N. Hu X.-Q. Tetrahedron Lett. 2015; 56: 2768
    • 14c He X. Shen Z. Mo W. Sun N. Hu B. Hu X. Adv. Synth. Catal. 2009; 351: 89
    • 14d Li L.-C. Matsuda R. Tanaka I. Sato H. Kanoo P. Jeon H.-J. Foo M.-L. Wakamiya A. Murata Y. Kitagawa S. J. Am. Chem. Soc. 2014; 136: 7543
    • 14e Xie Y. Mo W.-M. Xu D. Shen Z.-L. Sun N. Hu B.-X. Hu X.-Q. J. Org. Chem. 2007; 72: 4288
    • 14f Holan M. Jahn U. Org. Lett. 2014; 16: 58
    • 14g Ohkubo K. Fujimoto A. Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
    • 14h Zhang H. Wang G.-B. Tetrahedron Lett. 2014; 55: 56
    • 14i Huang H.-L. Cheng K. Yao B.-B. Xie Y.-J. Zhang Y.-H. J. Org. Chem. 2011; 76: 5732
    • 15a Shu Z.-B. Ye Y.-X. Deng Y.-F. Zhang Y. Wang J.-B. Angew. Chem. Int. Ed. 2013; 52: 10573
    • 15b Dutta U. Lupton DW. Maiti D. Org. Lett. 2016; 18: 860
  • 16 Hu M. Song R.-J. Li J.-H. Angew. Chem. Int. Ed. 2015; 54: 608
  • 17 Barral K. Moorhouse AD. Moses JE. Org. Lett. 2007; 9: 1809
  • 18 Shen Z. Sheng L. Zhang X. Mo W. Hua B. Sun N. Hu X. Tetrahedron Lett. 2013; 54: 1579