Synlett 2018; 29(05): 581-584
DOI: 10.1055/s-0036-1589146
letter
© Georg Thieme Verlag Stuttgart · New York

Insertion of the o-Aminophenol Core into Ninhydrin–Phenol Adducts: Migration of Ninhydrin Carbon Leading to N-Phenyl­benzoate-Substituted Phthalimides

Suven Das*
a  Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), Pin-743165, India   Email: suvenchem@yahoo.co.in
,
Arpita Dutta
b  Department of Chemistry, Rishi Bankim Chandra Evening College, Naihati, 24-Parganas (N), Pin-743165, India
,
Suvendu Maity
c  Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata-103, India
,
Prasanta Ghosh
c  Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata-103, India
,
Kalachand Mahali
d  Department of Chemistry, University of Kalyani, Nadia-741235, India
› Author Affiliations
Further Information

Publication History

Received: 22 September 2017

Accepted after revision: 08 November 2017

Publication Date:
19 December 2017 (eFirst)

Abstract

An unexpected migration of a ninhydrin carbon bearing a phenolic subunit has been observed when phenolic adducts of ninhydrin reacted with 2-aminophenol in butan-1-ol at the reflux temperature. The products were unambiguously assigned as 2-(1,3-dioxoisoindolin-2-yl)phenyl benzoates on the basis of NMR spectroscopy and X-ray crystallographic analysis.

Supporting Information

 
  • References and Notes

    • 1a Heugebaert TS. A. Roman B. Stevens CV. Chem. Soc. Rev. 2012; 41: 5626
    • 1b Speck K. Magauer T. Beilstein J. Org. Chem. 2013; 9: 2048
    • 1c Belliotti TR. Brink WA. Kesten SR. Rubin JR. Wustrow DJ. Zoski KT. Whetzel SZ. Corbin AE. Pugsley TA. Heffner TG. Wise LD. Bioorg. Med. Chem. Lett. 1998; 8: 1499
    • 2a Vamecq J. Bac P. Herrenknecht C. Maurois P. Delcourt P. Stables JP. J. Med. Chem. 2000; 43: 1311
    • 2b Guzior N. Bajda M. Rakoczy J. Brus B. Gobec S. Malawska B. Bioorg. Med. Chem. 2015; 23: 1629
    • 2c Huang M.-Z. Luo F.-X. Mo H.-B. Ren Y.-G. Wang X.-G. Ou X.-M. Lei M.-X. Liu A.-P. Huang L. Xu M.-C. J. Agric. Food Chem. 2009; 57: 9585
    • 2d Zhao P.-L. Ma W.-F. Duan A.-N. Zou M. Yan Y.-C. You W.-W. Wu S.-G. Eur. J. Med. Chem. 2012; 54: 813
    • 2e Kuo G.-H. Prouty C. Murray WV. Pulito V. Jolliffe L. Chueng P. Varga S. Evangelisto M. Wang J. J. Med. Chem. 2000; 43: 2183
  • 3 Guo X. Kim FS. Jenekhe SA. Watson MD. J. Am. Chem. Soc. 2009; 131: 7206
  • 4 Soldevilla A. Griesbeck AG. J. Am. Chem. Soc. 2006; 128: 16472
  • 5 Yoon UC. Oh SW. Lee JH. Park JH. Kang KT. Marino PS. J. Org. Chem. 2001; 66: 939
    • 6a Nishida J.-i. Ohura H. Kita Y. Hasegawa H. Kawase T. Takada N. Sato H. Sei Y. Yamashita Y. J. Org. Chem. 2016; 81: 433
    • 6b Shen Y. Zhang X. Zhang Y. Zhang C. Jin J. Li H. Spectrochim. Acta, Part A 2017; 185: 371
    • 7a Jamaleddini A. Mohammadizadeh MR. Tetrahedron Lett. 2017; 58: 78
    • 7b Saini Y. Khajuria R. Rana LK. Hundal G. Gupta VK. Kant R. Kapoor KK. Tetrahedron 2016; 72: 257
    • 7c Devi RV. Garande AM. Maity DK. Bhate PM. J. Org. Chem. 2016; 81: 1689
    • 7d Mukheerjee S. Kundu A. Pramanik A. Tetrahedron Lett. 2016; 57: 2103
    • 7e Ziarani GM. Lashgari N. Azimian F. Kruger HG. Gholamzadeh P. ARKIVOC 2015; (vi): 1 ; and references therein
    • 8a Das S. Dutta A. Heterocycles 2014; 89: 2786
    • 8b Das S. Dutta A. Heterocycles 2016; 92: 701
  • 9 Schmitt G. Nguyen DA. Poupelin J.-P. Vebrel J. Laude B. Synthesis 1984; 758
    • 10a Argunov DA. Krylov VB. Nifantiev NE. Org. Lett. 2016; 18: 5504
    • 10b Tenney LP. Boykin DW. Jr. Lutz RE. J. Am. Chem. Soc. 1966; 88: 1835
    • 10c Curtin DY. Engelmann JH. Tetra­hedron Lett. 1968; 9: 3911
    • 10d Kollenz G. Terpetschnig E. Sterk H. Peters K. Peters E.-M. Tetrahedron 1999; 55: 2973
    • 10e Chaudhary AG. Chordia MD. Kingston DG. J. Org. Chem. 1995; 60: 3260
    • 10f Iwamura T. Ichikawa T. Shimizu H. Kataoka T. Kai T. Takayanagi H. Muraoka O. Tetrahedron Lett. 1994; 35: 4587
    • 10g Lin L.-G. Su P.-G. Huang J.-R. Kuo C.-H. Lin C.-H. Dai C.-P. Chow TJ. Tetrahedron Lett. 2012; 53: 3510
    • 11a Bullington JL. Dodd JH. J. Org. Chem. 1993; 58: 4833
    • 11b Das S. Fröhlich R. Pramanik A. Synlett 2006; 207
    • 11c Song HN. Lee HJ. Kim HR. Ryu EK. Kim JN. Synth. Commun. 1999; 29: 3303
  • 12 2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)phenyl 2-Hydroxybenzoates 4ag; General Procedure The appropriate ninhydrin adduct 2 (1.4 mmol) and 2-aminophenol (2.0 mmol) were added sequentially to BuOH (6 mL), and the mixture was refluxed for 3 h until the reaction was complete (TLC). The mixture was then cooled to r.t. and left overnight. The precipitated product was collected by filtration, washed with cold MeOH, and crystallized from acetone. 2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)phenyl 2-Hydroxy-3-methoxybenzoate (4a) Light-yellow crystals; yield: 0.33 g (60%); mp 156–157 °C; IR (KBr): 3454, 3208, 1720, 1688 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 9.89 (s, 1 H), 7.94–7.91 (m, 2 H), 7.88–7.86 (m, 2 H), 7.64–7.58 (m, 3 H), 7.52–7.48 (m, 1 H), 7.24 (d, J = 8.0 Hz, 1 H), 7.17 (d, J = 7.8 Hz, 1 H), 6.75 (t, J = 8.0 Hz, 1 H), 3.76 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 166.2 (2 C), 165.4, 150.4, 148.3, 146.0, 134.9 (2 C), 131.3 (2 C), 130.1, 129.9, 126.6, 124.1, 123.9, 123.6 (2 C), 120.0, 118.8, 117.3, 112.8, 56.0. MS (ESI): m/z = 412 [M + Na]+, 279.1, 173.0. Anal. Calcd for C22H15NO6 (389.37): C, 67.87; H, 3.88; N, 3.60. Found: C, 67.70; H, 3.97; N, 3.45.
  • 13 CCDC 1566737 contains the supplementary crystallographic data for compound 4a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 Kundu SK. Patra A. Pramanik A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2004; 43: 604