Synthesis 2018; 50(05): 984-997
DOI: 10.1055/s-0036-1589144
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Amide Reductions

Aurélien Chardon
Laboratoire de Chimie Moléculaire et Thio-organique, Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: [email protected]
,
Eléonore Morisset
Laboratoire de Chimie Moléculaire et Thio-organique, Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: [email protected]
,
Jacques Rouden
Laboratoire de Chimie Moléculaire et Thio-organique, Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: [email protected]
,
Jérôme Blanchet*
Laboratoire de Chimie Moléculaire et Thio-organique, Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: [email protected]
› Author Affiliations
The authors thank the CNRS, Normandie Université, Labex Synorg (ANR-11-LABX-0029) for a fellowship (A.C.), and the Conseil Régional de Normandie and FEDER for financial support.
Further Information

Publication History

Received: 10 October 2017

Accepted after revision: 10 November 2017

Publication Date:
18 January 2018 (online)


Abstract

This short review highlights recent advances in amide reductions. The last two years have witnessed important developments with milestones reached in catalytic hydrogenations and hydrosilylations. While metal-catalyzed processes still focus tremendous efforts from the scientific community, methodologies based on the metal-free hydrosilylation of amides have definitively joined the competition.

1 Introduction

2 Recent Use of Stoichiometric Reducing Reagents

3 Hydrogenations

4 Hydrosilylations

5 Conclusion and Outlook

 
  • References


    • For recent reviews on amide hydrogenations, see:
    • 1a Smith AM. Whyman R. Chem. Rev. 2014; 114: 5477
    • 1b Werkmeister S. Junge K. Beller M. Org. Process Res. Dev. 2014; 18: 289
    • 2a Addis D. Das S. Junge K. Beller M. Angew. Chem. Int. Ed. 2011; 50: 6004
    • 2b Li B. Sortais J.-B. Darcel C. RSC. Adv. 2016; 6: 57603
    • 2c Mérel DS. Tran Do ML. Gaillard S. Dupau P. Renaud J.-L. Coord. Chem. Rev. 2015; 288: 50
    • 2d Liu T. Wang X. Yin D. RCS Adv. 2015; 5: 75794
  • 3 Volkov A. Tinnis F. Slagbrand T. Trillo P. Adolfsson H. Chem. Soc. Rev. 2016; 45: 6685
  • 4 For a related review, see: Li Y. Cui X. Dong K. Junge K. Beller M. ACS Catal. 2017; 7: 1077
  • 5 For a similar reason, twisted amides are beyond the scope of this review. See: Liu C. Szostak M. Chem. Eur. J. 2017; 23: 7157
  • 6 Brown RS. In The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science . Greenberg A. Breneman CM. Liebman JF. John Wiley & Sons; Hoboken: 2000: 85-114
  • 7 Weygand F. Eberhardt G. Linden H. Schäfer F. Eigen I. Angew. Chem. 1953; 65: 525
    • 8a Nystrom RF. Brown WG. J. Am. Chem. Soc. 1948; 70: 3738
    • 8b For a recent application, see: Di Gioia ML. Belsito EL. Leggio A. Leotta V. Romio E. Siciliano C. Liguori A. Tetrahedron Lett. 2015; 56: 2062
  • 9 Seyden-Penne J. Reductions by the Alumino- and Borohydrides in Organic Synthesis. 2nd ed. Wiley-VCH; New York: 1997
    • 10a Bailey CL. Joh AY. Hurley ZQ. Anderson CL. Singaram B. J. Org. Chem. 2016; 81: 3619
    • 10b See also: Snelling RA. Amberchan G. Resendez A. Murphy CL. Porter L. Singaram B. Tetrahedron Lett. 2017; 58: 4073
    • 11a Schedler DJ. A. Godfrey AG. Ganem B. Tetrahedron Lett. 1993; 34: 5035
    • 11b Schedler DJ. A. Li J. Ganem B. J. Org. Chem. 1996; 61: 4115
    • 11c White JM. Tunoori AR. Georg GI. J. Am. Chem. Soc. 2000; 122: 11995
  • 12 Nakajima M. Oda Y. Wada T. Minamikawa R. Shirokane K. Sato T. Chida N. Chem. Eur. J. 2014; 20: 17565
    • 13a Zhao Y. Snieckus V. Org. Lett. 2014; 16: 390
    • 13b For additional association of the Schwartz reagent and NaBH4, see: Huang P.-Q. Geng H. Org. Chem. Front. 2015; 2: 150
  • 14 Szostak M. Spain M. Eberhart AJ. Procter DJ. J. Am. Chem. Soc. 2014; 136: 2268
    • 15a Szostak M. Spain M. Eberhart AJ. Procter DJ. J. Org. Chem. 2014; 79: 11988
    • 15b Huq SR. Shi S. Diao R. Szostak M. J. Org. Chem. 2017; 82: 6528
  • 16 Huang P.-Q. Lang Q.-W. Wang A.-E. Zheng J.-F. Chem. Commun. 2015; 51: 1096
    • 17a Maihle A. Chem. Ztg 1908; 31: 1146
    • 17b Schneider HJ. Adkins H. McElvain SM. J. Am. Chem. Soc. 1952; 74: 4287
  • 18 Barrett AG. M. In Comprehensive Organic Syntheses . Vol. 8. Trost BM. Fleming I. Pergamon Press; Oxford: 1991: 248
    • 19a Coetzee J. Dodds DL. Klankermayer J. Brosinsky S. Leitner W. Slawin AM. Z. Cole-Hamilton DJ. Chem. Eur. J. 2013; 19: 11039
    • 19b For an earlier study in the absence of a Brønsted acid, see: Magro AA. N. Eastham GR. Cole-Hamilton DJ. Chem. Commun. 2007; 43: 3154
  • 20 Westhues S. Meuresch M. Klankermayer J. Angew. Chem. Int. Ed. 2016; 55: 12841
  • 21 Carbero-Antonino JR. Albericio E. Junge K. Beller M. Chem. Sci. 2016; 7: 3432
  • 22 Yuan M.-L. Xie J.-H. Zhou Q.-L. ChemCatChem 2016; 8: 3036
  • 23 Yuan M.-L. Xie J.-H. Zhu S.-F. Zhou Q.-L. ACS. Catal. 2016; 6: 3665
  • 24 Mitsudome T. Miyagawa K. Maeno Z. Mizugaki T. Jitsukawa K. Yamasaki J. Kitagawa Y. Kaneda K. Angew. Chem. Int. Ed. 2017; 56: 9381

    • For a seminal contribution, see:
    • 25a Hirosawa C. Wakasa N. Fuchikami T. Tetrahedron Lett. 1996; 37: 6749
    • 25b See also: Stein M. Breit B. Angew. Chem. Int. Ed. 2013; 52: 2231
    • 26a Onodera W. Touchy AS. Siddiki SM. A. H. Toyao T. Kon K. Shimizu K. ChemistrySelect 2016; 4: 736
    • 26b Nakagawa Y. Tamura R. Tamura M. Tomishige K. Sci. Technol. Adv. Mater. 2015; 16: 7
    • 27a Miura T. Naruto M. Toda K. Shimomura T. Saito S. Sci. Rep. 2017; 7: 1586
    • 27b See also: Takada Y. Iida M. Iida K. Miura T. Saito S. J. Synth. Org. Chem. Jpn. 2016; 74: 1078
    • 27c For an earlier report, see: Miura T. Held IE. Oishi S. Naruto M. Saito S. Tetrahedron Lett. 2013; 54: 2674
  • 28 For the reductive cleavage of picolinic amides, see: O’Donovan DH. De Fusco C. Spring DR. Tetrahedron Lett. 2016; 57: 2962
  • 29 Shi L. Tan X. Long J. Xiong X. Yang S. Yang S. Xue P. Lv H. Zhang X. Chem. Eur. J. 2017; 23: 546
    • 30a Rasu L. John JM. Stephenson E. Endean R. Kalapugama S. Clément R. Bergens SH. J. Am. Chem. Soc. 2017; 139: 3065
    • 30b John JM. Bergens SH. Angew. Chem. Int. Ed. 2011; 50: 10377
    • 30c John JM. Loorthuraja R. Antoniuk E. Bergens SH. Catal. Sci. Technol. 2015; 5: 1181
    • 31a Balaraman E. Gnanaprakasam B. Shimon LJ. W. Milstein D. J. Am. Chem. Soc. 2010; 132: 16756
    • 31b For Crabtree’s early results, see: Kilner M. Tyers D. Crabtree S. Wood M. PCT Int. Pat. Appl WO03/093208, 2003
  • 32 Garg JA. Chakraborty S. Ben-David Y. Milstein D. Chem. Commun. 2016; 52: 5285
  • 33 Schneck F. Assmann M. Balmer M. Harms K. Langer R. Organometallics 2016; 35: 1931
  • 34 Rezayee NM. Samblanet DC. Sanford MS. ACS. Catal. 2016; 6: 6377
  • 35 Jayarathne U. Zhang Y. Hazari N. Bernskoetter WH. Organometallics 2017; 36: 409
  • 36 Papa V. Carbrero-Antonio JR. Albericio E. Spanneberg A. Junge K. Junge H. Beller M. Chem. Sci. 2017; 8: 3576
  • 37 Pataud-Sat M. Moreau JE. E. Corriu RJ. P. J. Organomet. Chem. 1982; 228: 301
  • 39 Kuwano R. Takahashi M. Ito Y. Tetrahedron. Lett. 1998; 39: 1017
    • 40a Das S. Li Y. Bornschein C. Pisiewicz S. Kiersch K. Michalik D. Gallou F. Junge K. Beller M. Angew. Chem. Int. Ed. 2015; 54: 12389
    • 40b See also: Das S. Li Y. Lu LQ. Junge K. Beller M. Chem. Eur. J. 2016; 22: 7050
  • 41 Nguyen TV. Q. Yoo W.-J. Kobayashi S. Adv. Synth. Catal. 2016; 358: 452
    • 42a Cheng C. Brookhart M. J. Am. Chem. Soc. 2012; 134: 11304
    • 42b For the recent use of an iridium metallacycle with TMDS, see: Corre Y. Trivelli X. Capet F. Djukic J.-P. Agbossou-Niedercorn F. Michon C. ChemCatChem 2017; 9: 2009
    • 43a Nakajima M. Sato T. Chida N. Org. Lett. 2015; 17: 1696
    • 43b Huang P.-Q. Ou W. Han F. Chem. Commun. 2016; 52: 11967
  • 44 Andrews KG. Summers DM. Donnelly LJ. Denton RM. Chem. Commun. 2016; 52: 1855
  • 45 Fuentes de Arriba AL. Lenci E. Sonawane M. Formery O. Dixon DJ. Angew. Chem. Int. Ed. 2017; 129: 3709

    • For selected Ru catalysis, see:
    • 46a Reeves JT. Tan Z. Marsini MA. Han ZS. Xu Y. Reeves DC. Lee H. Lu BZ. Senanayake CH. Adv. Synth. Catal. 2013; 355: 47
    • 46b Hanada S. Tsutsumi E. Motoyama Y. Nagashima H. J. Am. Chem. Soc. 2009; 131: 15032
    • 46c Sasakuma H. Motoyama Y. Nagashima H. Chem. Commun. 2007; 43: 4916
  • 47 Simmons BJ. Hoffmann M. Hwang J. Jackl MK. Garg NK. Org. Lett. 2017; 19: 1910
  • 48 Tinnis F. Volkov A. Slagbrand T. Adolfsson H. Angew. Chem. Int. Ed. 2016; 55: 4562
    • 49a Sakai N. Fujii K. Konakahara T. Tetrahedron Lett. 2008; 49: 6873
    • 49b See also: Ogiwara Y. Uchiyama T. Sakai N. Angew. Chem. Int. Ed. 2016; 55: 1864
  • 50 Ogiwara Y. Shimoda W. Ide K. Nagajima T. Sakai N. Eur. J. Org. Chem. 2017; 2866
    • 51a Calas R. Frainnet E. Bazouin A. Compt. Rend. Acad. Sci. 1962; 254: 2357
    • 51b Calas R. Pure Appl. Chem. 1966; 13: 61
    • 52a Das S. Addis D. Zhou S. Junge K. Beller M. J. Am. Chem. Soc. 2010; 132: 1770
    • 52b For safer conditions, see: Das S. Addis D. Junge K. Beller M. Chem. Eur. J. 2011; 17: 12186
  • 53 Wells AS. Org. Process Res. Dev. 2010; 14: 484
  • 54 Kovalenko OO. Volkov A. Adolfsson H. Org. Lett. 2015; 17: 446
  • 55 Fernández-Salas J. Manzini S. Nolan SP. Chem. Commun. 2013; 49: 9758
  • 56 Xie W. Zhao M. Cui C. Organometallics 2013; 32: 7440
  • 57 Mamillapalli NC. Sekar G. RCS Adv. 2014; 4: 61077
  • 58 Das S. Addis D. Knöpke LR. Bentrup U. Junge K. Brückner A. Beller M. Angew. Chem. Int. Ed. 2011; 50: 9180
  • 59 Tan M. Zhang Y. Tetrahedron Lett. 2009; 50: 4912
    • 60a Parks DJ. Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
    • 60b See also: Rendler S. Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
  • 61 Blondiaux E. Cantat T. Chem. Commun. 2014; 50: 9342
  • 62 Chadwick RC. Kardelis V. Lim P. Adronov A. J. Org. Chem. 2014; 79: 7728
  • 63 Lucas KM. Kleman AF. Sadergaski LR. Jolly CL. Bollinger BS. Mackesey BL. McGrath NA. Org. Biomol. Chem. 2016; 14: 5774
    • 64a Barbe G. Charette AB. J. Am. Chem. Soc. 2008; 130: 18
    • 64b Pelletier G. Bachara WS. Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
    • 65a Lang Q.-W. Wang Y.-R. Huang P.-Q. J. Org. Chem. 2016; 81: 4235
    • 65b See also: Huang P.-Q. Huang Y.-H. Xiao K.-J. Wang Y. Xia X.-E. J. Org. Chem. 2015; 80: 2861

    • From the same authors, see:
    • 65c Lang Q.-W. Hu X.-N. Huang P.-Q. J. Org. Chem. 2016; 81: 10227
    • 65d Lang Q.-W. Hu X.-N. Huang P.-Q. Sci. Chin. Chem. 2016; 59: 1639
  • 66 Fu M.-C. Shang R. Cheng W.-M. Fu Y. Angew. Chem. Int. Ed. 2015; 54: 9042
  • 67 Zhang Q. Fu M.-C. Yu H.-Z. Fu Y. J. Org. Chem. 2016; 81: 6235
  • 68 Li Y. Molina de La Torre JA. Grabow K. Bentrup U. Junge K. Zhou S. Brückner A. Beller M. Angew. Chem. Int. Ed. 2013; 52: 11577
    • 69a Brown HC. Kim SC. Krishnamurthy S. J. Org. Chem. 1980; 45: 1
    • 69b Brown HC. Kim S.-C. Synthesis 1977; 635
  • 70 Manas GM. Sharninghausen LS. Balcells D. Crabtree RH. New J. Chem. 2014; 38: 1694
  • 71 Mukherjee D. Shirase S. Mashima K. Okuda J. Angew. Chem. Int. Ed. 2016; 55: 13326
  • 72 Chardon A. Mohy El Dine T. Legay R. De Paolis M. Rouden J. Blanchet J. Chem. Eur. J. 2017; 23: 2005
  • 73 Angurusa A. Mehta M. Perez M. Zhu J. Stephan DW. Chem. Commun. 2016; 52: 12195