Synlett 2018; 29(05): 650-654
DOI: 10.1055/s-0036-1589143
letter
© Georg Thieme Verlag Stuttgart · New York

Cyrene as a Bio-Based Solvent for the Suzuki–Miyaura Cross-Coupling

Kirsty L. Wilson
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: allan.watson.100@strath.ac.uk
,
Jane Murray
b   Merck KgaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
,
Craig Jamieson
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: allan.watson.100@strath.ac.uk
,
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: allan.watson.100@strath.ac.uk
› Author Affiliations
We thank the University of Strathclyde for a PhD studentship (KLW) and Merck KGaA for financial and material support.
Further Information

Publication History

Received: 10 October 2017

Accepted after revision: 02 November 2017

Publication Date:
11 December 2017 (online)


Abstract

The Suzuki–Miyaura (SM) cross-coupling is the most broadly utilized Pd-catalyzed C–C bond-forming reaction in the chemical industry. A large proportion of SM couplings employ dipolar aprotic solvents; however, current sustainability initiatives and increasingly stringent regulations advocate the use of alternatives that exhibit more desirable properties. Here we describe the scope and utility of the bio-derived solvent Cyrene™ in SM cross-couplings and evaluate its suitability as a reaction medium for this benchmark transformation from discovery to gram scale.

Supporting Information

 
  • References and Notes

  • 1 King AO. Yasuda N. Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals. Springer; Heidelberg: 2004
  • 2 Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 3 Roughley SD. Vernalis AM. J. J. Med. Chem. 2011; 54: 3451
  • 4 Brown DG. Boström J. J. Med. Chem. 2016; 59: 4443
  • 5 Ohe T. Miyaura N. Suzuki A. J. Org. Chem. 1993; 58: 2201
  • 6 Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
  • 7 Hall D. Boronic Acids: Preparation, Application in Organic Synthesis and Medicine. John Wiley and Sons; Weinheim: 2006
  • 8 Jessop PG. Green Chem. 2011; 13: 1391
  • 9 Clark JH. Tavener S. J. Org. Process Res. Dev. 2007; 11: 149
  • 10 Welton T. Proc. R. Soc. A 2015; 471: 1
  • 11 Dunn PJ. Chem. Soc. Rev. 2012; 41: 1452
  • 12 Roschangar F. Colberg J. Dunn PJ. Gallou F. Hayler JD. Koenig SG. Kopach ME. Leahy DK. Mergelsberg I. Tucker JL. Sheldon RA. Senanayake CH. Green Chem. 2016; 19: 281
  • 13 Constable DJ. C. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang TY. Green Chem. 2007; 9: 411
  • 14 Tobiszewski M. Namieśnik J. Pena-Pereira F. Green Chem. 2017; 19: 1034
  • 15 Alder CM. Hayler JD. Henderson RK. Redman AM. Shukla L. Shuster LE. Sneddon HF. Green Chem. 2016; 18: 3879
  • 16 Byrne FP. Jin S. Paggiola G. Petchey TH. M. Clark JH. Farmer TJ. Hunt AJ. McElroy CR. Sherwood J. Sustainable Chem. Processes 2016; 4: 7
  • 17 Diorazio LJ. Hose DR. J. Adlington NK. Org. Process Res. Dev. 2016; 20: 760
  • 18 Eastman HE. Jamieson C. Watson AJ. B. Aldrichimica Acta 2015; 48: 51
  • 19 Prat D. Wells A. Hayler J. Sneddon HF. McElroy CR. Abou-Shehada S. Dunn PJ. Green Chem. 2015; 18: 288
  • 20 Skowerski K. Białecki J. Tracz A. Olszewski TK. Green Chem. 2014; 16: 1125
  • 21 eChemPortal – Home: http://www.echemportal.org/echemportal/substancesearch/page.action?pageID=0; accessed October 2017.
  • 22 Candidate List of substances of very high concern for Authori­sation – ECHA: https://echa.europa.eu/candidate-list-table; accessed October 2017.
  • 23 Ramgren SD. Hie L. Ye Y. Garg NK. Org. Lett. 2013; 15: 3950
  • 24 Franzén R. Xu Y. Can. J. Chem. 2005; 83: 266
  • 25 Ghorbani-Choghamarani A. Norouzi M. New J. Chem. 2016; 40: 6299
  • 26 Hie L. Garg NK. Org. Synth. 2016; 93: 306
  • 27 Stibingerova I. Voltrova S. Kocova S. Lindale M. Srogl J. Org. Lett. 2016; 18: 312
  • 28 Azua A. Mata JA. Heymes P. Peris E. Lamaty F. Martinez J. Colacino E. Adv. Synth. Catal. 2013; 355: 1107
  • 29 Wan J.-P. Wang C. Zhou R. Liu Y. RSC Adv. 2012; 2: 8789
  • 30 Horváth IT. Green Chem. 2008; 10: 1024
  • 31 Spear SK. Griffin ST. Granger KS. Huddleston JG. Rogers RD. Green Chem. 2007; 9: 1008
  • 32 Gu Y. Jérôme F. Green Chem. 2010; 12: 1127
  • 33 Pace V. Hoyos P. Castoldi L. Dominguez de Maria P. Alecantara AR. ChemSusChem. 2012; 5: 1369
  • 34 Lomba L. Giner B. Bandrés I. Lafuente C. Pino R. Green Chem. 2011; 13: 2062
  • 35 Pereira CS. M. Silva VM. T. M. Rodrigues AE. Green Chem. 2011; 13: 2658
  • 36 Alonso DM. Wettstein SG. Dumesic JA. Green Chem. 2013; 15: 584
  • 37 Byrne F. Forier B. Bossaert G. Hoebers C. Farmer TJ. Clark JH. Hunt AJ. Green Chem. 2017; 19: 3671
  • 38 Ilgen F. König B. Green Chem. 2009; 11: 848
  • 39 Imperato G. Vasold R. König B. Adv. Synth. Catal. 2006; 348: 2243
  • 40 Pongrácz P. Kollár L. Mika LT. Green Chem. 2016; 18: 842
  • 41 Ismalaj E. Strappaveccia G. Ballerini E. Elisei F. Piermatti O. Gelman D. Vaccaro L. ACS Sustainable Chem. Eng. 2014; 2: 2461
  • 42 Strappaveccia G. Luciani L. Bartollini E. Marrocchi A. Pizzo F. Vaccaro L. Green Chem. 2015; 17: 1071
  • 43 Rasina D. Kahler-Quesada A. Ziarelli S. Warratz S. Cao H. Santoro S. Ackermann L. Vaccaro L. Green Chem. 2016; 18: 5025
  • 44 Strappaveccia G. Ismalaj E. Petrucci C. Lanari D. Marrocchi A. Drees M. Facchetti A. Vaccaro L. Green Chem. 2014; 17: 365
  • 45 Wilson KL. Kennedy AR. Murray J. Greatrex B. Jamieson C. Watson AJ. B. Beilstein J. Org. Chem. 2016; 12: 2005
  • 46 Krishna SH. McClelland DJ. Rashke QA. Dumesic JA. Huber GW. Green Chem. 2017; 19: 1278
  • 47 Cao F. Schwartz TJ. McClelland DJ. Krishna SH. Dumesic JA. Huber GW. Energy Environ. Sci. 2015; 8: 1808
  • 48 Koseki K. Ebata T. Kawakami H. Matsushita H. Itoh K. Naoi Y. US 5112994, 1992
  • 49 Sherwood J. De Bruyn M. Constantinou A. Moity L. McElroy CR. Farmer TJ. Duncan T. Raverty W. Hunt AJ. Clark JH. Chem. Commun. 2014; 50: 9650
  • 50 REACH dossier for Cyrene: https://echa.europa.eu/registration-dossier/-/registered-dossier/16252; accessed July 2017.
  • 51 Mistry L. Mapesa K. Bousfield TW. Camp JE. Green Chem. 2017; 19: 2123
  • 52 Salavagione HJ. Sherwood J. De bruyn M. Budarin VL. Ellis GJ. Clark JH. Shuttleworth PS. Green Chem. 2017; 19: 2550
  • 53 Lawrenson S. North M. Peigneguy F. Routledge A. Green Chem. 2017; 19: 952
  • 54 Dach R. Song JJ. Roschangar F. Samstag W. Senanayake CH. Org. Process. Res. Dev. 2012; 16: 1697
  • 55 Amatore C. Jutand A. Le Duc G. Chem. Eur. J. 2011; 17: 2492
  • 56 Carrow BP. Hartwig JF. J. Am. Chem. Soc. 2011; 133: 2116
  • 57 Fyfe JW. B. Valverde E. Seath CP. Kennedy AR. Redmond JM. Anderson NA. Watson AJ. B. Chem. Eur. J. 2015; 21: 8951
  • 58 Seath CP. Fyfe JW. B. Molloy JJ. Watson AJ. B. Angew. Chem. Int. Ed. 2015; 54: 9976
  • 59 Muir CW. Vantourout JC. Isidro-llobet A. Macdonald SJ. F. Watson AJ. B. Org. Lett. 2015; 17: 6030
  • 60 Fyfe JW. B. Seath CP. Watson AJ. B. Angew. Chem. Int. Ed. 2014; 53: 12077
  • 61 Fyfe JW. B. Fazakerley NJ. Watson AJ. B. Angew. Chem. Int. Ed. 2017; 56: 1249
  • 62 Seath CP. Wilson KL. Campbell A. Mowat JM. Watson AJ. B. Chem. Commun. 2016; 52: 8703
  • 63 Muszalska I. Sobczak A. Dołh A. Nska AJ. J. Pharm. Sci. 2014; 103: 2
  • 64 General Procedure for Suzuki–Miyaura Coupling in Cyrene To an oven dried 5 mL microwave vessel was added Pd(dppf)Cl2·CH2Cl2 (4 mol%), halide/pseudohalide (1 equiv), boron coupling partner (1 equiv), and Cs2CO3 (3 equiv). The vessel was then capped and purged with N2 before addition of Cyrene (1 mL, 0.25 M) and H2O (1.8 mL). The reaction mixture was heated to 50 °C and maintained at this temperature with stirring for 5 h before the vessel was vented and decapped. The solution was then diluted with Et2O (10 mL) and washed with water (2 × 20 mL) and brine (2 × 20 mL). The organics were then passed through a hydrophobic frit and concentrated under reduced pressure to give a residue, which was purified by flash chromatography (silica gel) to afford the title compound. 4-Phenyltoluene (4a) Prepared according to the General Procedure using Pd(dppf)Cl2·CH2Cl2 (8.2 mg, 0.01 mmol, 4 mol%), bromotoluene 2a (42.8 mg, 0.25 mmol, 1 equiv), phenylboronic acid (3a, 30.5 mg, 0.25 mmol, 1 equiv), Cs2CO3 (244.5 mg, 0.75 mmol, 3 equiv), Cyrene (1 mL, 0.25 M), and H2O (1.8 mL, 400 equiv). After 5 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0–5% Et2O in PE) to afford the title compound as a white solid (42.9 mg, quant). 1H NMR (CDCl3, 400 MHz): δ = 7.62 (dd, J = 8.3, 1.2 Hz, 2 H), 7.53 (d, J = 8.1 Hz, 2 H), 7.46 (t, J = 7.6 Hz, 2 H), 7.38–7.33 (m, 1 H), 7.29 (d, J = 7.9 Hz, 2 H), 2.43 (s, 3 H). 13C NMR (CDCl3, 101 MHz): δ = 141.2, 138.4, 136.9, 129.5, 128.7, 126.9, 21.1.