Synthesis 2018; 50(04): 778-784
DOI: 10.1055/s-0036-1589140
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Synthesis of Aryl and Heteroaryl Difluoromethylated Phosphonates

Maria V. Ivanova
a   Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   Email: thomas.poisson@insa-rouen.fr
,
Tatiana Besset
a   Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   Email: thomas.poisson@insa-rouen.fr
,
Xavier Pannecoucke
a   Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   Email: thomas.poisson@insa-rouen.fr
,
a   Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France   Email: thomas.poisson@insa-rouen.fr
b   Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France
› Author Affiliations
This work was partially supported by INSA Rouen, Rouen University, CNRS, EFRD, Labex SynOrg (ANR-11-LABX-0029), Région Normandie (Crunch Network) and the IUF (Institut Universitaire de France). M.V.I. thanks the MESR for a doctoral fellowship.
Further Information

Publication History

Received: 28 September 2017

Accepted after revision: 26 October 2017

Publication Date:
29 November 2017 (online)


Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry

Abstract

We report the palladium-catalyzed introduction of the di­fluoromethylposphonate unit onto aryl and heteroaryl iodides under mild conditions. Using the CuCF2PO(OEt)2 species generated in situ, the method allows the functionalization of various otherwise reluctant substrates. In addition, this reaction permits the formation of CF2PO(OEt)2-containing heterocycles, an important class of compounds. This process broadens the current toolbox of methods available to construct CF2PO(OEt)2-containing molecules.

Supporting Information

 
  • References


    • For selected reviews, see:
    • 1a Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 1b Furuya T. Kamlet AS. Ritter T. Nature 2011; 473: 470
    • 1c Landelle G. Panossian A. Pazenok S. Vors J.-P. Leroux FR. Beilstein J. Org. Chem. 2013; 9: 2476
    • 1d Landelle G. Panossian A. Leroux FR. Curr. Top. Med. Chem. 2014; 14: 941
    • 1e Champagne PA. Desroches J. Hamel J.-D. Vandamme M. Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 1f Landelle G. Bergeron M. Turcotte-Savard M.-O. Paquin J.-F. Chem. Soc. Rev. 2011; 40: 2867
    • 1g Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
    • 1h Besset T. Jubault P. Pannecoucke X. Poisson T. Org. Chem. Front. 2016; 3: 1004
    • 1i Belhomme M.-C. Besset T. Poisson T. Pannecoucke X. Chem. Eur. J. 2015; 21: 12836
    • 1j Besset T. Poisson T. Pannecoucke X. Chem. Eur. J. 2014; 20: 16830
    • 1k Ni C. Zhu L. Hu J. Acta Chim. Sin. 2015; 73: 90
    • 1l Hu J. Zhang W. Wang F. Chem. Commun. 2009; 7465
    • 1m Ni C. Hu J. Chem. Soc. Rev. 2016; 45: 5441
    • 1n Besset T. Poisson T. Pannecoucke X. Eur. J. Org. Chem. 2015; 2765
    • 1o For a special issue on fluorine chemistry, see: Chem. Rev. 2015; 115: 563
  • 2 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 3a Böhm H.-J. Banner D. Bendels S. Kansy M. Kuhn B. Müller K. Obst-Sander U. Stahl M. ChemBioChem 2004; 5: 637
    • 3b Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 3c Gillis EP. Eastman KJ. Hill MD. Donnelly DJ. Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 3d Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 3e Ilardi EA. Vitaku E. Njardarson JT. J. Med. Chem. 2014; 57: 2832
  • 4 Meanwell NA. J. Med. Chem. 2011; 54: 2529
  • 5 Ivanova MV. Bayle A. Besset T. Pannecoucke X. Poisson T. Chem. Eur. J. 2016; 22: 10284 ; and references cited therein
  • 6 Blackburn GM. Kent DE. Kolkmann F. J. Chem. Soc., Chem. Commun. 1981; 1188
    • 7a Bialy L. Waldmann H. Angew. Chem. Int. Ed. 2005; 44: 3814
    • 7b Combs AP. J. Med. Chem. 2010; 53: 2333
    • 7c Morlacchi P. Mandal PK. McMurray JS. ACS Med. Chem. Lett. 2014; 5: 69
    • 7d Bahta M. Lountos GT. Dyas B. Kim S.-E. Ulrich RG. Waugh DS. Burke TR. Jr. J. Med. Chem. 2011; 54: 2933
    • 7e Lau CK. Bayly CI. Gauthier JY. Li CS. Therien M. Asante-Appiah E. Cromlish W. Boie Y. Forghani F. Desmarais S. Wang Q. Skorey K. Waddleton D. Payette P. Ramachandran C. Kennedy BP. Scapin G. Bioorg. Med. Chem. Lett. 2004; 14: 1043
    • 7f Johnson TO. Ermolieff J. Jirousek MR. Nat. Rev. Drug Discovery 2002; 1: 696
  • 8 Qiu W. Burton DJ. Tetrahedron Lett. 1996; 37: 2745
  • 9 Yokomatsu T. Murano T. Suemune K. Shibuya S. Tetrahedron 1997; 53: 815
  • 10 Feng Z. Min Q.-Q. Xiao Y.-L. Zhang B. Zhang X. Angew. Chem. Int. Ed. 2014; 53: 1669
  • 11 Jiang X. Chu L. Qing F.-L. New J. Chem. 2013; 37: 1736
  • 12 Feng Z. Chen F. Zhang X. Org. Lett. 2012; 14: 1938
  • 13 Feng Z. Xiao Y.-L. Zhang X. Org. Chem. Front. 2014; 1: 113
  • 14 Bayle A. Cocaud C. Nicolas C. Martin OR. Poisson T. Pannecoucke X. Eur. J. Org. Chem. 2015; 3787
  • 15 Ivanova MV. Bayle A. Besset T. Poisson T. Pannecoucke X. Angew. Chem. Int. Ed. 2015; 54: 13406
  • 16 TMSCF2PO(OEt)2 is commercially available, but can also be readily prepared, see: Nieschalk J. Batsanov AS. O’Hagan D. Howard J. Tetrahedron 1996; 52: 165
  • 17 All other tested ligands gave lower or no conversion into 2a.
  • 18 Ivanova MV. Bayle A. Besset T. Pannecoucke X. Poisson T. Chem. Eur. J. 2017; DOI: in press; doi: 10.1002/chem.201703542.
  • 19 Only a few heterocyclic compounds bearing a CF2PO(OEt)2 motif were synthesized, see refs. 12 and 15.