Synthesis 2018; 50(01): 49-63
DOI: 10.1055/s-0036-1589113
short review
© Georg Thieme Verlag Stuttgart · New York

Turning the Light On: Recent Developments in Photoinduced Olefin Metathesis

Or Eivgi
a   Department of Chemistry, Ben-Gurion University of the Negev, Be’er-Sheva, 84105, Israel   eMail: Lemcoff@bgu.ac.il
,
a   Department of Chemistry, Ben-Gurion University of the Negev, Be’er-Sheva, 84105, Israel   eMail: Lemcoff@bgu.ac.il
b   Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva, 84105, Israel
› Institutsangaben
The Israel Science Foundation is gratefully acknowledged for funding (Grant No. 537/14).
Weitere Informationen

Publikationsverlauf

Received: 21. Juli 2017

Accepted after revision: 31. August 2017

Publikationsdatum:
21. September 2017 (online)


Abstract

Olefin metathesis is one of the most important methods to form carbon–carbon double bonds and has found many applications in industry and academia. The ability to initiate the reaction using external stimulus such as light, with high spatial and temporal resolution is highly advantageous and provides creative novel opportunities in organic syntheses and material sciences. This review article covers recent advances in light-activated olefin metathesis reactions from the development of novel complexes that can be initiated photochemically to recently reported applications of photoinduced olefin metathesis, as well as the bright newly emerging field of photoredox-mediated metal-free ROMP.

1 Introduction

2 Light-Activated Olefin Metathesis Complexes

2.1 Sulfur-Chelated Hoveyda–Grubbs-Type Complexes

2.2 Nitrogen-Chelated Hoveyda–Grubbs-Type Complexes

2.3 Catalyst Activation with Photoacid Generators

2.4 Phototuning of Active Complexes

2.5 Photoactivation of Non-Grubbs-Type Olefin Metathesis Complexes

3 Photoredox-Mediated Metal-Free ROMP

4 Applications of Photoinduced Olefin Metathesis

4.1 Chromatic Orthogonal Olefin Metathesis

4.2 UV-Filter-Assisted Olefin Metathesis

4.3 Photolithographic Olefin Metathesis Polymerization

5 Conclusions

 
  • References

  • 1 Higman CS. Lummiss JA. M. Fogg DE. Angew. Chem. Int. Ed. 2016; 55: 3552
    • 2a Handbook of Metathesis . O’Leary DJ. Grubbs RH. Wiley-VCH; Weinheim: 2015. 2nd ed., Vol. 2
    • 2b Grela K. In Olefin Metathesis Theory and Practice . John Wiley; New Jersey: 2014. 1st ed
    • 3a Montgomery TP. Ahmed TS. Grubbs RH. Angew. Chem. Int. Ed. 2017; 56: 11024
    • 3b Peryshkov DV. Schrock RR. Takase MK. Müller P. Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 20754
    • 3c Keitz BK. Endo K. Patel PR. Herbert MB. Grubbs RH. J. Am. Chem. Soc. 2012; 134: 693
    • 3d Occhipinti G. Hansen FR. Törnroos KW. Jensen VR. J. Am. Chem. Soc. 2013; 135: 3331
    • 3e Khan RK. M. Torker S. Hoveyda AH. J. Am. Chem. Soc. 2013; 135: 10258
    • 3f Smit W. Koudriavtsev V. Occhipinti G. Törnroos KW. Jensen VR. Organometallics 2016; 35: 1825
    • 3g Koh MJ. Nguyen TT. Lam JK. Torker S. Hyvl J. Schrock RR. Hoveyda AH. Nature (London) 2017; 542: 80
    • 4a Hoveyda AH. Malcolmson SJ. Meek SJ. Zhugralin AR. Angew. Chem. Int. Ed. 2010; 49: 34
    • 4b Hartung J. Dornan PK. Grubbs RH. J. Am. Chem. Soc. 2014; 136: 13029
    • 4c Ivry E. Ben-Asuly A. Goldberg I. Lemcoff NG. Chem. Commun. 2015; 51: 3870
    • 5a Mikus MS. Torker S. Hoveyda AH. Angew. Chem. Int. Ed. 2016; 55: 4997
    • 5b Schrock RR. Dalton Trans. 2011; 40: 7484
    • 5c Jang ES. John JM. Schrock RR. J. Am. Chem. Soc. 2017; 139: 5043
    • 5d Hayano S. Nakama Y. Macromolecules 2014; 47: 7797
    • 6a Monsaert S. Lozano Vila A. Drozdzak R. Van Der Voort P. Verpoort F. Chem. Soc. Rev. 2009; 38: 3360
    • 6b Diesendruck CE. Iliashevsky O. Ben-Asuly A. Goldberg I. Lemcoff NG. Macromol. Symp. 2010; 293: 33
    • 6c Teator AJ. Lastovickova DN. Bielawski CW. Chem. Rev. 2016; 116: 1992
    • 6d Ogawa KA. Goetz AE. Boydston AJ. Synlett 2016; 27: 203
  • 7 Saha S. Ginzburg Y. Rozenberg I. Iliashevsky O. Ben-Asuly A. Gabriel Lemcoff N. Polym. Chem. 2016; 7: 3071
  • 8 Vidavsky Y. Lemcoff NG. Beilstein J. Org. Chem. 2010; 6: 1106
  • 9 Ben-Asuly A. Tzur E. Diesendruck CE. Sigalov M. Goldberg I. Lemcoff NG. Organometallics 2008; 27: 811
    • 10a Kost T. Sigalov M. Goldberg I. Ben-Asuly A. Lemcoff NG. J. Organomet. Chem. 2008; 693: 2200
    • 10b Ben-Asuly A. Aharoni A. Diesendruck CE. Vidavsky Y. Goldberg I. Straub BF. Lemcoff NG. Organometallics 2009; 28: 4652
    • 10c Diesendruck CE. Tzur E. Ben-Asuly A. Goldberg I. Straub BF. Lemcoff NG. Inorg. Chem. 2009; 48: 10819
    • 10d Aharoni A. Vidavsky Y. Diesendruck CE. Ben-Asuly A. Goldberg I. Lemcoff NG. Organometallics 2011; 30: 1607
  • 11 Ginzburg Y. Anaby A. Vidavsky Y. Diesendruck CE. Ben-Asuly A. Goldberg I. Lemcoff NG. Organometallics 2011; 30: 3430
  • 12 Grudzień K. Żukowska K. Malińska M. Woźniak K. Barbasiewicz M. Chem. Eur. J. 2014; 20: 2819
    • 13a van der Schaaf PA. Kolly R. Kirner H.-J. Rime F. Mühlebach A. Hafner A. J. Organomet. Chem. 2000; 606: 65
    • 13b Slugovc C. Burtscher D. Stelzer F. Mereiter K. Organometallics 2005; 24: 2255
    • 13c Hejl A. Day MW. Grubbs RH. Organometallics 2006; 25: 6149
    • 13d Barbasiewicz M. Szadkowska A. Bujok R. Grela K. Organometallics 2006; 25: 3599
    • 13e Gstrein X. Burtscher D. Szadkowska A. Barbasiewicz M. Stelzer F. Grela K. Slugovc C. J. Polym. Sci., Part A: Polym. Chem. 2007; 45: 3494
    • 13f Szadkowska A. Gstrein X. Burtscher D. Jarzembska K. Woźniak K. Slugovc C. Grela K. Organometallics 2010; 29: 117
    • 13g Monsaert S. Ledoux N. Drozdzak R. Verpoort F. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 302
  • 14 Wang D. Unold J. Bubrin M. Elser I. Frey W. Kaim W. Xu G. Buchmeiser MR. Eur. J. Inorg. Chem. 2013; 5462
  • 15 Sashuk V. Danylyuk O. Chem. Eur. J. 2016; 22: 6528
  • 16 Keitz BK. Grubbs RH. J. Am. Chem. Soc. 2009; 131: 2038
  • 17 Khalimon AY. Leitao EM. Piers WE. Organometallics 2012; 31: 5634
  • 18 Romero PE. Piers WE. McDonald R. Angew. Chem. Int. Ed. 2004; 43: 6161
  • 19 Teator AJ. Shao H. Lu G. Liu P. Bielawski CW. Organometallics 2017; 36: 490
  • 20 Wang D. Wurst K. Knolle W. Decker U. Prager L. Naumov S. Buchmeiser MR. Angew. Chem. Int. Ed. 2008; 47: 3267
  • 21 Wang D. Wurst K. Buchmeiser MR. Chem. Eur. J. 2010; 16: 12928
  • 22 Wang D. Unold J. Bubrin M. Frey W. Kaim W. Buchmeiser MR. ChemCatChem 2012; 4: 1808
  • 23 Ogawa KA. Goetz AE. Boydston AJ. J. Am. Chem. Soc. 2015; 137: 1400
  • 24 Miura T. Kim S. Kitano Y. Tada M. Chiba K. Angew. Chem. Int. Ed. 2006; 45: 1461
    • 25a Schultz DM. Yoon TP. Science (Washington, D. C.) 2014; 343: 1239176
    • 25b Nicewicz DA. Nguyen TM. ACS Catal. 2014; 4: 355
    • 25c Du J. Skubi KL. Schultz DM. Yoon TP. Science (Washington, D. C.) 2014; 344: 392
    • 25d Riener M. Nicewicz DA. Chem. Sci. 2013; 4: 2625
    • 25e Ischay MA. Ament MS. Chem. Sci. 2012; 3: 2807
  • 26 Goetz AE. Boydston AJ. J. Am. Chem. Soc. 2015; 137: 7572
  • 27 Goetz AE. Pascual LM. M. Dunford DG. Ogawa KA. Knorr DB. Boydston AJ. ACS Macro Lett. 2016; 5: 579
  • 28 Pascual LM. M. Dunford DG. Goetz AE. Ogawa KA. Boydston AJ. Synlett 2016; 27: 759
  • 29 Pascual LM. M. Goetz AE. Roehrich AM. Boydston AJ. Macromol. Rapid Commun. 2017; 38: 1600766
  • 30 Lu P. Alrashdi NM. Boydston AJ. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 2977
  • 31 Wong C.-H. Zimmerman SC. Chem. Commun. 2013; 49: 1679
    • 33a Hansen MJ. Velema WA. Lerch MM. Szymanski W. Feringa BL. Chem. Soc. Rev. 2015; 44: 3358
    • 33b Blanc A. Bochet CG. Org. Lett. 2007; 9: 2649
    • 33c San Miguel V. Bochet CG. del Campo A. J. Am. Chem. Soc. 2011; 133: 5380
    • 33d Debieux J.-L. Bochet CG. Chem. Sci. 2012; 3: 405
  • 34 Lerch MM. Hansen MJ. Velema WA. Szymanski W. Feringa BL. Nat. Commun. 2016; 7: 12054
  • 35 Levin E. Mavila S. Eivgi O. Tzur E. Lemcoff NG. Angew. Chem. Int. Ed. 2015; 54: 12384
    • 36a Brook MA. Gottardo C. Balduzzi S. Mohamed M. Tetrahedron Lett. 1997; 38: 6997
    • 36b Brook MA. Balduzzi S. Mohamed M. Gottardo C. Tetrahedron 1999; 55: 10027
    • 37a Schmidt B. Nave S. Chem. Commun. 2006; 2489
    • 37b Schmidt B. Nave S. Adv. Synth. Catal. 2007; 349: 215
  • 38 Sutar RL. Levin E. Butilkov D. Goldberg I. Reany O. Lemcoff NG. Angew. Chem. Int. Ed. 2016; 55: 764
  • 39 Eivgi O. Levin E. Lemcoff NG. Org. Lett. 2015; 17: 740
    • 40a Kingsbury JS. Harrity JP. A. Bonitatebus PJ. Hoveyda AH. J. Am. Chem. Soc. 1999; 121: 791
    • 40b Garber SB. Kingsbury JS. Gray BL. Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
    • 40c Kozłowska A. Dranka M. Zachara J. Pump E. Slugovc C. Skowerski K. Grela K. Chem. Eur. J. 2014; 20: 14120
  • 41 Eivgi O. Sutar R. Reany O. Lemcoff NG. Adv. Synth. Catal. 2017; 359: 2352
  • 42 Nelson DJ. Manzini S. Urbina-Blanco CA. Nolan SP. Chem. Commun. 2014; 50: 10375
  • 43 Louie J. Grubbs RH. Organometallics 2002; 21: 2153
  • 44 Weitekamp RA. Atwater HA. Grubbs RH. J. Am. Chem. Soc. 2013; 135: 16817