Synthesis 2017; 49(20): 4651-4662
DOI: 10.1055/s-0036-1589053
special topic
© Georg Thieme Verlag Stuttgart · New York

The Synthesis of Imidazo[1,2-f]phenanthridines, Phenanthro-[9,10-d]imidazoles, and Phenanthro[9′,10′:4,5]imidazo[1,2-f]-phenanthridines via Intramolecular Oxidative Aromatic Coupling

Kamil Skonieczny
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: dtgryko@icho.edu.pl
,
Jarosław Jaźwiński
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: dtgryko@icho.edu.pl
,
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: dtgryko@icho.edu.pl
› Author Affiliations
Financial support of our work from the National Science Centre, Poland (Grant Preludium UMO-2013/09/N/ST5/02974) and the Foundation for Polish Science (Grant number TEAM/2009-4/3) is gratefully acknowledged. The research leading to these results has received partial funding from the European Community’s Seventh Framework Programme under the TOPBIO project- grant agreement n. 264362.
Further Information

Publication History

Received: 09 April 2017

Accepted after revision: 22 May 2017

Publication Date:
26 June 2017 (online)

Published as part of the Special Topic Modern Strategies for Heterocycles Synthesis

Abstract

A short and efficient access to phenanthro[9,10-d]imidazoles, imidazo[1,2-f]phenanthridines, and phenanthro[9′,10′:4,5]imidazo[1,2-f]phenanthridines was achieved by the action of [bis(trifluoroacetoxy)iodo]benzene (PIFA) on properly substituted tetraaryl­-imidazoles. By pre-installing suitable electron-donating groups, it is possible to control the site of intramolecular oxidative aromatic coupling. In particular, by placing 3,4-dimethoxyphenyl and 3-methoxyphenyl moieties in close proximity, it was possible to direct the reaction into forming two biaryl linkages leading eventually to the formation of phenanthro[9′,10′:4,5]imidazo[1,2-f]phenanthridines. Starting from bis-aldehydes that are derivatives of thieno[3,2-b]thiophene and fluorene enabled the synthesis of π-expanded imidazoles bearing 8-9 conjugated rings. By placing a dimethoxynaphthalene unit on the imidazole scaffold, we have directed the oxidative coupling reaction towards closing a five-membered ring with concomitant removal of methoxy group leading to formation of an α,β-unsaturated ketone. All resulting π-expanded imidazoles display blue emission, and the fluorescence quantum yields in some cases reaches 0.9.

Supporting Information

 
  • References

    • 1a Grzybowski M. Skonieczny K. Butenschön H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
    • 1b Taylor WI. Battersby AB. Oxidative Coupling of Phenols. Arnold; London: 1967
    • 1c Whiting AD. In Comprehensive Organic Synthesis . Vol. 3 Trost BM. Fleming I. Pergamon; Oxford: 1991: 659
    • 1d Ip H.-W. Ng C.-H. Chow H.-F. Kuck D. J. Am. Chem. Soc. 2016; 138: 13778
    • 1e Dohi T. Ito M. Itani I. Yamaoka N. Morimoto K. Fujioka K. Kita Y. Org. Lett. 2011; 13: 6208
    • 1f Haire BT. Heard KW. J. Little MS. Parry AV. S. Raftery J. Quayle P. Yeates SG. Chem. Eur. J. 2015; 21: 9970
    • 1g Ip H.-W. Chow H.-F. Kuck D. Org. Chem. Front. 2017; 4: 817
    • 1h Morrison JJ. McDouall JJ. W. Yeates SG. Quayle P. Eur. J. Org. Chem. 2013; 6038
    • 1i Mughall EU. Kuck D. Chem. Commun. 2012; 48: 8880
    • 1j Bodzioch A. Kowalska E. Skalik J. Bałczewski P. Chem. Heterocycl. Compd. 2017; 53: 1
    • 1k Zeng W. Phan H. Herng TS. Gopalakrishna TY. Aratani N. Zeng Z. Yamada H. Ding J. Wu J. Chem 2017; 2: 81
    • 1l Zhao J. Xu Z. Oniwa K. Asao N. Yamamoto Y. Jin T. Angew. Chem. Int. Ed. 2016; 55: 259
    • 1m Schubert M. Franzmann P. Wünsche von Leupoldt A. Koszinowski K. Heinze K. Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 1156
    • 1n Fujikawa T. Segawa Y. Itami K. J. Am. Chem. Soc. 2016; 138: 3587
    • 1o Żyła M. Gońka E. Chmielewski PJ. Cybińska J. Stępień M. Chem. Sci. 2016; 7: 286
    • 1p Ooi S. Tanaka T. Park KH. Kim D. Osuka A. Angew. Chem. Int. Ed. 2016; 55: 6535
    • 1q Gu X. Wang H. Roose J. He Z. Zhou Y. Yan Y. Cai Y. Shi H. Zhang Y. Sung HH. Y. Lam JW. Y. Miao Q. Zhao Y. Wong KS. Williams ID. Tang BZ. Chem. Eur. J. 2015; 21: 17973
  • 2 Griefsmayer V. Justus Liebigs Ann. Chem. 1871; 160: 40
    • 3a Little MS. Yeates SG. Alwattar AA. Heard KW. J. Raftery J. Edwards AC. Parry AV. S. Quayle P. Eur. J. Org. Chem. 2017; 1694
    • 3b Liu J. Narita A. Osella S. Zhang W. Schollmeyer D. Beljonne D. Feng X. Müllen K. J. Am. Chem. Soc. 2016; 138: 2602
    • 3c Krzeszewski M. Świder P. Dobrzycki Ł. Cyrański MK. Danikiewicz W. Gryko DT. Chem. Commun. 2016; 52: 11539
    • 4a Dössel L. Gherghel L. Feng X. Müllen K. Angew. Chem. Int. Ed. 2011; 50: 2540
    • 4b Pradhan A. Dechambenoit P. Bock H. Durola F. Angew. Chem. Int. Ed. 2011; 50: 12582
    • 4c Oded YN. Pogodin S. Agranat I. J. Org. Chem. 2016; 81: 11389
    • 5a Rempala P. Kroulik J. King BT. J. Am. Chem. Soc. 2004; 126: 15002
    • 5b Zhang N. Samanta SR. Rosen BM. Percec V. Chem. Rev. 2014; 114: 5848
    • 5c Rempala B. Kroulik J. King BT. J. Org. Chem. 2006; 71: 5067
    • 6a Wehming K. Schubert M. Schnakenburg G. Waldvogel SR. Chem. Eur. J. 2014; 20: 12463
    • 6b Schubert M. Trosien S. Schulz L. Brandscheid C. Schollmeyer D. Waldvogel SR. Eur. J. Org. Chem. 2014; 7091
    • 6c Leppin J. Schubert M. Waldvogel SR. Heinze K. Chem. Eur. J. 2015; 21: 4229
    • 7a Yang Y. Yuan L. Shan B. Liu Z. Miao Q. Chem. Eur. J. 2016; 22: 18620
    • 7b Fujikawa T. Segawa Y. Itami K. J. Am. Chem. Soc. 2015; 137: 7763
    • 7c Hackeloer K. Schnakenburg G. Siegfried R. Waldvogel SR. Org. Lett. 2011; 13: 916
    • 7d Mirk D. Wibbeling B. Fröhlich R. Waldvogel SR. Synlett 2004; 1970
    • 7e Waldvogel SR. Synlett 2002; 622
    • 7f King BT. Kroulík J. Robertson CR. Rempala P. Hilton CL. Korinek JD. Gortari LM. J. Org. Chem. 2007; 72: 2279
  • 8 Grimmet MR. In Comprehensive Heterocyclic Chemistry . Vol. 5 Katritzky AR. Rees CW. Pergamon; Oxford: 1984: 457
    • 9a Debus H. Justus Liebigs Ann. Chem. 1858; 107: 199
    • 9b Radziszewski B. Ber. Dtsch. Chem. Ges. 1882; 15: 1493
    • 10a Hayashi T. Maeda K. Bull. Chem. Soc. Jpn. 1962; 35: 2057
    • 10b Hayashi T. Maeda K. Shida S. Nakada K. J. Chem. Phys. 1960; 32: 1568
    • 10c Blinder SM. Peller MJ. Lord NW. Aamodt KC. Ivanchukov NS. J. Chem. Phys. 1962; 36: 540
    • 10d White EH. Harding MJ. C. Photochem. Photobiol. 1965; 4: 1129
    • 10e Park S. Kwon OH. Kim S. Park S. Choi MG. Cha M. Park SY. Jang DJ. J. Am. Chem. Soc. 2005; 127: 10070
    • 11a Patil NT. Mutyala AK. Lakshmi PG. V. V. Raju PV. K. Sridhar B. Eur. J. Org. Chem. 2010; 1999
    • 11b Skonieczny K. Gryko DT. J. Org. Chem 2015; 80: 5753
    • 11c Yan L. Zhao D. Lan J. Cheng Y. Guo Q. Li X. Wu N. You J. Org. Biomol. Chem. 2013; 11: 7966
  • 12 Parenty AD. C. Song YF. Richmond CJ. Cronin L. Org. Lett. 2007; 9: 2253
    • 13a Sakaino Y. Kakisawa H. Kusumi T. J. Chem. Soc., Perkin Trans. 1 1975; 2361
    • 13b Nakano E. Mutoh K. Kobayashi Y. Abe J. J. Phys. Chem. A 2014; 118: 2288
    • 13c Shima K. Mutoh K. Kobayashi Y. Abe J. J. Am. Chem. Soc. 2014; 136: 3796
    • 13d Yamaguchi T. Hatano S. Abe J. J. Phys. Chem. A 2014; 118: 134
    • 13e Hatano S. Horino T. Tokita A. Oshima T. Abe J. J. Am. Chem. Soc. 2013; 135: 3164
    • 13f Hatano S. Fujita K. Tamaoki N. Kaneko T. Nakashima T. Naito M. Kawai T. Abe J. J. Phys. Chem. Lett. 2011; 2: 2680
    • 13g Harada Y. Hatano S. Kimoto A. Abe J. J. Phys. Chem. Lett. 2010; 1: 1112
    • 13h Miyasaka H. Satoh Y. Yutaka SI. Taniguchi NS. Chosrowjan H. Mataga N. Kato D. Kikuchi A. Abe J. J. Am. Chem. Soc. 2009; 131: 7256
    • 13i Kawano M. Sano T. Abe J. Ohashi Y. J. Am. Chem. Soc. 1999; 121: 8106
  • 14 Skonieczny K. Yoo J. Larsen JM. Espinoza EM. Barbasiewicz M. Vullev VI. Lee C.-H. Gryko DT. Chem. Eur. J. 2016; 22: 7485
    • 15a Sarhan AA. O. Bolm C. Chem. Soc. Rev. 2009; 38: 2730
    • 15b Seidel D. Lynch V. Sessler JL. Angew. Chem. Int. Ed. 2002; 41: 1422
    • 16a Kita Y. Arisawa M. Gyoten M. Nakajima M. Hamada R. Tohma H. Takada T. J. Org. Chem. 1998; 63: 6625
    • 16b Kita Y. Dohi T. Morimoto K. J. Synth. Org. Chem. 2011; 69: 47
    • 17a Herrero MT. Tellitu I. Domínguez E. Hernández S. Moreno I. SanMartín R. Tetrahedron 2002; 58: 8581
    • 17b Moreno I. Tellitu I. SanMartín R. Badía D. Carrillo L. Domínguez E. Tetrahedron Lett. 1999; 40: 5067
    • 17c Moreno I. Tellitu I. SanMartín R. Domínguez E. Synlett 2001; 1161
    • 17d Olivera R. SanMartin R. Domínguez E. J. Org. Chem. 2000; 65: 7010
    • 18a Bratz LT. Niementowski S. Chem. Ber. 1919; 52: 189
    • 18b Sahoo AK. Nakamura Y. Aratani N. Kim KS. Noh SB. Shinokubo H. Kim D. Osuka A. Org. Lett. 2006; 8: 4141
    • 19a Lewtak JP. Gryko D. Bao D. Sebai E. Vakuliuk O. Ścigaj M. Gryko DT. Org. Biomol. Chem. 2011; 9: 8178
    • 19b Takeya T. Okubo T. Nishida S. Tobinaga S. Chem. Pharm. Bull. 1985; 33: 3599
  • 20 Halton B. Maidment AI. Officer DL. Warnes JM. Aust. J. Chem. 1984; 37: 2119
  • 21 Jurdon J. Garnier L. Powell RL. J. Chem. Soc., Perkin Trans. 2 1996; 625
    • 22a Nyberg K. Wistrand L.-G. Chem. Scr. 1974; 6: 234
    • 22b McKillop A. Turrell AG. Young DW. Taylor EC. Y. J. Am. Chem. Soc. 1980; 102: 6504
    • 23a Barton JW. Grinham AR. J. Chem. Soc. C 1971; 1256
    • 23b Pisula W. Dierschke F. Müllen K. J. Mater. Chem. 2006; 16: 4058
    • 23c Skonieczny K. Gryko DT. J. Org. Chem. 2015; 80: 5753
  • 24 CCDC 1538110 (compound 10), CCDC 1538109 (compound 12) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 25a Pei J. Wen S. Zhou Y. Dong Q. Liu Z. Zhang J. Tian W. New J. Chem. 2011; 35: 385
    • 25b Leriche P. Raimundo J.-M. Turbiez M. Monroche V. Allain M. Sauvage F.-X. Roncali J. Frere P. Skabara PJ. J. Mater. Chem. 2003; 13: 1324
  • 26 Yelamaggad CV. Achalkumar AS. Rao DS. S. Prasad SK. J. Org. Chem. 2007; 72: 8308
  • 27 Duddeck H. Chem. Rec. 2005; 5: 396 ; and references cited therein
    • 28a Liu Z.-Q. Fang Q. Cao D.-X. Wang D. Xu G.-B. Org. Lett. 2004; 6: 2933
    • 28b Parent M. Mongin O. Kamada K. Katana C. Blanchard-Desce M. Chem. Commun. 2005; 2029
    • 28c Kim HM. Yang WJ. Kim CH. Park W.-H. Jeon S.-J. Cho BR. Chem. Eur. J. 2005; 11: 6386
    • 28d Porrès L. Mongin O. Blanchard-Desce M. Tetrahedron Lett. 2006; 47: 1913
    • 28e Lin T.-C. Liu Y.-Y. Li M.-H. Liu C.-Y. Tseng S.-Y. Wang Y.-T. Tseng Y.-H. Chu H.-H. Luo C.-W. Chem. Asian J. 2014; 9: 1601
    • 28f Krzeszewski M. Thorsted B. Brewer J. Gryko DT. J. Org. Chem. 2014; 79: 3119
    • 28g Murai M. Ku S.-Y. Treat ND. Robb MJ. Chabinyc ML. Hawker CJ. Chem. Sci. 2014; 5: 3753
    • 28h Orłowski R. Banasiewicz M. Clermont G. Castet F. Nazir R. Blanchard-Desce M. Gryko DT. Phys. Chem. Chem. Phys. 2015; 17: 23724
    • 29a Buttke K. Baumgärtel H. Niclas H.-J. Schneider M. J. Prakt. Chem. 1997; 339: 721
    • 29b Jayabharathi J. Thanikachalam V. Srinivasan N. Saravanan K. J. Fluoresc. 2011; 21: 595
    • 29c Markle TF. Rhile IJ. DiPasquale AG. Mayer JM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 8185
    • 29d Park S. Kwon JE. Park SY. Phys. Chem. Chem. Phys. 2012; 14: 8878
    • 29e Jayabharathi J. Thanikachalam V. Perumal MV. Srinivasan N. J. Fluoresc. 2012; 22: 409
    • 29f Jayabharathi J. Thanikachalam V. Perumal MV. Spectrochim. Acta Part A 2012; 92: 113
    • 29g Yuan Y. Li D. Zhang X. Zhao X. Liu Y. Zhang J. Wang Y. New J. Chem. 2011; 35: 1534