Synthesis 2017; 49(13): 2803-2818
DOI: 10.1055/s-0036-1589019
short review
© Georg Thieme Verlag Stuttgart · New York

Intramolecular Oxidative Palladium-Catalyzed Amination Involving Double C–H Functionalization of Unactivated Olefins

Gianluigi Broggini*
a  Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, via Valleggio 11, 22100, Como, Italy   Email: [email protected]
,
Tea Borelli
a  Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, via Valleggio 11, 22100, Como, Italy   Email: [email protected]
,
Sabrina Giofré
b  DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
,
Alberto Mazza
b  DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
› Author Affiliations
Further Information

Publication History

Received: 16 February 2017

Accepted after revision: 06 April 2017

Publication Date:
15 May 2017 (online)


Abstract

Intramolecular palladium-catalyzed amination reactions are becoming important tools for the synthesis of various nitrogen-containing­ heterocycles. This account highlights the developments achieved in this field by domino processes in oxidative conditions using unactivated olefins, due to their advantages in terms of step economy and efficiency. These reactions involve the change of oxidation state in the palladium intermediate, requiring the presence of an oxidizing agent to regenerate the catalytic cycle. This kind of additive is essential for the success of the reaction and it can also furnish nucleophilic species that are incorporated into the final product. Reactions can occur at either the intra/intra- or intra/intermolecular level, providing valuable methodologies for the preparation of (poly)heterocyclic scaffolds. Besides, procedures based on the use of strengthened catalytic systems, more recently, disclosed intriguing conditions have enlarged the possibility to modulate the substrate reactivity. Perspectives in this field are directed to the discovery of new reaction conditions, focusing on the employment of oxidatively stable ligands useful for the asymmetric catalysis­.

1 Introduction

2 Carboamination Reactions

2.1 Pd(0)/Pd(II)

2.2 Pd(II)/Pd(IV)

3 Aminooxygenation Reactions

3.1 Pd(0)/Pd(II)

3.2 Pd(II)/Pd(IV)

4 Diamination Reactions

4.1 Pd(0)/Pd(II)

4.2 Pd(II)/Pd(IV)

5 Aminohalogenation Reactions

5.1 Pd(0)/Pd(II)

5.2 Pd(II)/Pd(IV)

6 Conclusions

 
  • References

    • 2a Hartwig JF. In Modern Arene Chemistry. Astruc D. Wiley-VCH; Weinheim: 2002: 107
    • 2b Buchwald SL. Muci AR. Top. Curr. Chem. 2002; 219: 131
    • 2c Jiang L. Buchwald SL. In Metal Catalyzed Cross-Coupling Reactions. 2nd ed.; de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004: 699
    • 2d Hartwig JF. Synlett 2006; 1283
    • 2e Surry DS. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 3a Queiroz M.-JR. P. Calhelha RC. Vale-Silva LA. Pinto E. São-José Nascimento M. Eur. J. Med. Chem. 2010; 45: 5732
    • 3b Bouhlel A. Curti C. Dumtre A. Laget M. Crozet MD. Azas N. Vanelle P. Bioorg. Med. Chem. 2010; 18: 7310
    • 3c Taylor RR. R. Twin HC. Wen WW. Mallot RJ. Lough AJ. Gray-Owen SD. Batey RA. Tetrahedron 2010; 66: 3370
    • 3d Gelmi ML. Pocar D. Pontremoli G. Pellegrino S. Bombardelli E. Fontana G. Riva A. Balduini W. Carloni S. Cimino M. Johnson F. J. Med. Chem. 2006; 49: 5571
    • 3e Beccalli EM. Broggini G. Paladino G. Zoni C. Tetrahedron 2005; 61: 61
    • 3f Grasl S. Meier C. Nucleosides, Nucleotides Nucleic Acids 2003; 22: 1119
    • 3g Basolo L. Bernasconi A. Borsini E. Broggini G. Beccalli EM. ChemSusChem 2011; 4: 1637
    • 4a McDonald RI. Liu G. Stahl SS. Chem. Rev. 2011; 111: 2981
    • 4b Beccalli EM. Broggini G. Fasana A. Rigamonti M. J. Organomet. Chem. 2011; 696: 277
    • 4c Nack WA. Chen G. Synlett 2015; 26: 2505
    • 6a Hegedus LS. Allen GF. Bozell JJ. Waterman EL. J. Am. Chem. Soc. 1978; 100: 5800
    • 6b Hegedus LS. McKearin JM. J. Am. Chem. Soc. 1982; 104: 2444
    • 6c Hegedus LS. J. Mol. Catal. 1983; 19: 201
    • 7a Battistuzzi G. Cacchi S. Fabrizi G. Eur. J. Org. Chem. 2002; 2671
    • 7b Ball CJ. Willis MC. Eur. J. Org. Chem. 2013; 425
    • 7c Clavier H. Pellissier H. Adv. Synth. Catal. 2012; 354: 3347
    • 7d Ohno H. Chiba H. Inuki S. Oishi S. Fujii N. Synlett 2014; 25: 179
    • 8a Brown EG. Ring Nitrogen and Key Biomolecules. Springer; Boston: 1998
    • 8b Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 8c Walsh CT. Tetrahedron Lett. 2015; 56: 3075
    • 8d Christodoulou MS. Calogero F. Baumann M. García-Argáez AN. Pieraccini S. Sironi M. Dapiaggi F. Bucci R. Broggini G. Gazzola S. Liekens S. Silvani A. Lahtela-Kakkonen M. Martinet N. Nonell-Canals A. Santamaría-Navarro E. Baxendale IR. Dalla Via L. Passarella D. Eur. J. Med. Chem. 2015; 92: 766
    • 8e Pellegrino S. Ruscica M. Magni P. Vistoli G. Gelmi ML. Bioorg. Med. Chem. 2013; 21: 5470
    • 8f Romeo R. Navarra M. Giofrè SV. Carnovale C. Cirmi S. Lanza G. Chiacchio MA. Bioorg. Med. Chem. 2014; 22: 3379
    • 8g Romeo R. Giofrè SV. Carnovale C. Chiacchio MA. Campisi A. Mancuso R. Cirmi S. Navarra M. Eur. J. Org. Chem. 2014; 5442
    • 8h Vila N. Besada P. Costas T. Costas-Lago MC. Teran C. Eur. J. Med. Chem. 2015; 97: 462
    • 8i Chen Y.-J. Jin S. Yao Z.-J. Tetrahedron 2014; 70: 4921
  • 9 Yip K.-T. Yang M. Law K.-L. Zhu N.-Y. Yang D. J. Am. Chem. Soc. 2006; 128: 3130
  • 10 He W. Yip K.-T. Zhu N.-Y. Yang D. Org. Lett. 2009; 11: 5626
  • 11 Yip K.-T. Zhu N.-Y. Yang D. Org. Lett. 2009; 11: 1911
  • 12 Abbiati G. Beccalli E. Broggini G. Martinelli M. Paladino G. Synlett 2006; 73
  • 13 Xing D. Yang D. Org. Lett. 2013; 15: 4370
  • 14 Zheng J. Huang L. Huang C. Wu W. Jiang H. J. Org. Chem. 2015; 80: 1235
  • 15 Beccalli E. Broggini G. Gazzola S. Mazza A. Org. Biomol. Chem. 2014; 12: 6767
  • 16 Kubizna P. Špánik I. Kožíšek J. Szolcsányi P. Tetrahedron 2010; 66: 2351
  • 17 Rosewall CF. Sibbald PA. Liskin DV. Michael FE. J. Am. Chem. Soc. 2009; 131: 9488
  • 18 Sibbald PA. Rosewall CF. Swartz RD. Michael FE. J. Am. Chem. Soc. 2009; 131: 15945
  • 19 Szolcsányi P. Gracza T. Chem. Commun. 2005; 3948
  • 20 Szolcsányi P. Gracza T. Tetrahedron 2006; 62: 8498
  • 21 Borsini E. Broggini G. Fasana A. Galli S. Khansaa M. Piarulli U. Rigamonti M. Adv. Synth. Catal. 2011; 353: 985
  • 22 Broggini G. Barbera V. Beccalli EM. Chiacchio U. Fasana A. Galli S. Gazzola S. Adv. Synth. Catal. 2013; 355: 1640
  • 23 Chiacchio U. Barbera V. Bonfanti R. Broggini G. Campisi A. Gazzola S. Parenti R. Romeo G. Bioorg. Med. Chem. 2013; 21: 5748
  • 24 Alladoum J. Vrancken E. Mangeney P. Roland S. Kadouri-Puchot C. Org. Lett. 2009; 11: 3746
  • 25 Alexanian EJ. Lee C. Sorensen EJ. J. Am. Chem. Soc. 2005; 127: 7690
  • 26 Rajabi J. Lorion MM. Ly VL. Liron F. Oble J. Prestat G. Poli G. Chem. Eur. J. 2014; 20: 1539
  • 27 Broggini G. Beccalli EM. Borelli T. Brusa F. Gazzola S. Mazza A. Eur. J. Org. Chem. 2015; 4261
  • 28 Manick AD. Duret G. Tran DN. Berhal F. Prestat G. Org. Chem. Front. 2014; 1: 1058
  • 29 Beccalli EM. Broggini G. Paladino G. Penoni A. Zoni C. J. Org. Chem. 2004; 69: 5627
  • 30 Borelli T. Brenna S. Broggini G. Oble J. Poli G. Adv. Synth. Catal. 2017; 359: 623
  • 31 Desai LV. Sanford MS. Angew. Chem. Int. Ed. 2007; 46: 5737
  • 32 Chen S. Wu T. Liu G. Zhen X. Synlett 2011; 891
  • 33 Zhu H. Chen P. Liu G. J. Am. Chem. Soc. 2014; 136: 1766
  • 34 Zhu H. Chen P. Liu G. Org. Lett. 2015; 17: 1485
  • 35 Kou X. Li Y. Wu L. Zhang X. Yang G. Zhang W. Org. Lett. 2015; 17: 5566
  • 36 Li J. Grubbs RH. Stoltz BM. Org. Lett. 2016; 18: 5449
    • 37a Fairlamb IJ. S. Angew. Chem. Int. Ed. 2015; 54: 10415
    • 37b Zultanski SL. Stahl SS. J. Organomet. Chem. 2015; 793: 263
  • 38 Liskin DV. Sibbald PA. Rosewall CF. Michael FE. J. Org. Chem. 2010; 75: 6294
  • 39 Chen C. Chen P. Liu G. J. Am. Chem. Soc. 2015; 137: 15648
  • 40 Muñiz K. Hövelmann CH. Campos-Gómez E. Barluenga J. Gonzáles JM. Streuff J. Nieger M. Chem. Asian J. 2008; 3: 776
  • 41 Hövelmann CH. Streuff J. Brelot L. Muñiz K. Chem. Commun. 2008; 2334
  • 42 Muñiz K. Streuff J. Chávez P. Hövelmann CH. Chem. Asian J. 2008; 3: 1248
  • 43 Chávez P. Kirsch J. Streuff J. Muñiz K. J. Org. Chem. 2012; 77: 1922
  • 44 Chiacchio U. Broggini G. Romeo R. Gazzola S. Chiacchio MA. Giofrè SV. Gabriele B. Mancuso R. Floresta G. Zagni C. RSC Adv. 2016; 6: 57521
  • 45 Streuff J. Hövelmann CH. Nieger M. Muñiz K. J. Am. Chem. Soc. 2005; 127: 14586
  • 46 Muñiz K. Hövelmann CH. Streuff J. J. Am. Chem. Soc. 2008; 130: 763
  • 47 Yu H. Fu Y. Guo Q. Lin Z. Organometallics 2009; 28: 4507
  • 48 Muñiz K. J. Am. Chem. Soc. 2007; 129: 14542
  • 49 Sibbald PA. Michael FE. Org. Lett. 2009; 11: 1147
  • 50 Ingalls EL. Sibbald PA. Kaminsky W. Michael FE. J. Am. Chem. Soc. 2013; 135: 8854
  • 51 Li Y. Kou X. Ye C. Zhang X. Yang G. Zhang W. Tetrahedron Lett. 2017; 58: 285
  • 52 Lei A. Lu X. Liu G. Tetrahedron Lett. 2004; 45: 1785
  • 53 Christie SD. R. Warrington AD. Lunniss CJ. Synthesis 2009; 148
  • 54 Manzoni MR. Zabawa TP. Kasi D. Chemler SR. Organometallics 2004; 23: 5618
  • 55 Broggini G. Barbera V. Beccalli EM. Borsini E. Galli S. Lanza G. Zecchi G. Adv. Synth. Catal. 2012; 354: 159
  • 56 Borsini E. Broggini G. Colombo F. Khansaa M. Fasana A. Galli S. Passarella D. Riva E. Riva S. Tetrahedron: Asymmetry 2011; 22: 264
  • 57 Yin G. Wu T. Liu G. Chem. Eur. J. 2012; 18: 451
  • 58 Wu T. Yin G. Liu G. J. Am. Chem. Soc. 2009; 131: 16354
  • 59 Wu L. Chen P. Liu G. Org. Lett. 2016; 18: 960
  • 60 Cheng J. Chen P. Liu G. Chin. J. Catal. 2015; 36: 40
  • 61 Wu T. Cheng J. Chen P. Liu G. Chem. Commun. 2013; 49: 8707