Synthesis 2017; 49(12): 2605-2620
DOI: 10.1055/s-0036-1589003
short review
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Catalytic Methods for the Elaboration of Chiral Tetrahydro-β-carbolines and Related Scaffolds

Nicolas Glinsky-Olivier
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France   eMail: xavier.guinchard@cnrs.fr
,
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France   eMail: xavier.guinchard@cnrs.fr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 07. Februar 2017

Accepted after revision: 27. März 2017

Publikationsdatum:
02. Mai 2017 (online)


Abstract

Tetrahydro-β-carbolines are important synthetic intermediates in the total synthesis of natural products and of compounds exhibiting strong bioactivities. Over the last decades, catalytic methods using chiral catalysts have been described for their synthesis. This review covers catalytic and enantioselective methods to access chiral tetrahydro-β-carbolines and their applications in the elaboration of complex chiral molecules.

1 Introduction

2 Asymmetric Reduction of Dihydro-β-carbolines

2.1 Asymmetric Transfer Hydrogenation Reactions

2.2 Asymmetric Hydrogenation Reactions

2.3 Biocatalyzed Reduction of Dihydro-β-carbolines

3 Organocatalyzed Pictet–Spengler Reactions

3.1 Chiral Thiourea-Catalyzed Reactions

3.2 Chiral Phosphoric Acid Catalyzed Reactions

4 Pictet–Spengler Reactions of In Situ Generated Cyclic Iminiums

5 Organocatalyzed Functionalization of Dihydro-β-carboliniums

6 Organocatalyzed Alkylation of Tetrahydro-β-carbolines

7 Biocatalyzed Dynamic Kinetic Resolution of Tetrahydro-β-carbolines

8 Conclusion and Perspectives

 
  • References

  • 1 Baeyer A. Liebigs Ann. 1866; 140: 295
    • 2a Bartoli G. Bencivenni G. Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
    • 2b Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 2c Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 2d Cacchi S. Fabrizi G. Chem. Rev. 2011; 111: PR215
    • 2e Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
    • 2f Roche SP. Youte Tendoung J.-J. Tréguier B. Tetrahedron 2015; 71: 3549
    • 2g Sundberg RJ. The Chemistry of Indoles 1970
    • 3a Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 3b Rahman A. Basha A. Indole Alkaloids. Harwood; Reading: 1999
    • 3c Kaushik N. Kaushik N. Attri P. Kumar N. Kim C. Verma A. Choi E. Molecules 2013; 18: 6620
  • 4 Fisher MJ. Backer RT. Husain S. Hsiung HM. Mullaney JT. O’Brian TP. Ornstein PL. Rothhaar RR. Zgombick JM. Briner K. Bioorg. Med. Chem. Lett. 2005; 15: 4459
  • 5 Koch MA. Schuffenhauer A. Scheck M. Wetzel S. Casaulta M. Odermatt A. Ertl P. Waldmann H. Proc. Natl. Acad. Sci., U.S.A. 2005; 102: 17272
    • 6a Domínguez G. Pérez-Castells J. Eur. J. Org. Chem. 2011; 7243
    • 6b Laine A. Lood C. Koskinen A. Molecules 2014; 19: 1544
    • 6c Cao R. Peng W. Wang Z. Xu A. Curr. Med. Chem. 2007; 14: 479

      For some examples using chiral oxaborolidines, chiral borohydrides, or calix[6]arenes/NaBH4, see:
    • 7a Nakagawa M. Kawate T. Kakikawa T. Yamada H. Matsui T. Hino T. Tetrahedron 1993; 49: 1739
    • 7b Hajipour AR. Hantehzadeh M. J. Org. Chem. 1999; 64: 8475
    • 7c Santos LS. Fernandes SA. Pilli RA. Marsaioli AJ. Tetrahedron: Asymmetry 2003; 14: 2515

    • For enantioselective Pictet–Spengler reactions using stoichiometric chiral borane reagents, see:
    • 7d Kawate T. Yamada H. Than S. Nakagawa M. Tetrahedron: Asymmetry 1996; 7: 1249
    • 7e Yamada H. Kawate T. Matsumizu M. Nishida A. Yamaguchi K. Nakagawa M. J. Org. Chem. 1998; 63: 6348

      For representative examples of diastereoselective methods, see:
    • 8a Soerens D. Sandrin J. Ungemach F. Mokry P. Wu GS. Yamanaka E. Hutchins L. Dipierro M. Cook JM. J. Org. Chem. 1979; 44: 535
    • 8b Kumpaty HJ. Van Linn ML. Kabir MS. Försterling FH. Deschamps JR. Cook JM. J. Org. Chem. 2009; 74: 2771
    • 8c Van Linn ML. Cook JM. J. Org. Chem. 2010; 75: 3587

    • For the use of chiral auxiliaries, see:
    • 8d Kawate T. Yamanaka M. Nakagawa M. Heterocycles 1990; 50: 1033
    • 8e Gremmen C. Willemse B. Wanner MJ. Koomen G.-J. Org. Lett. 2000; 2: 1955
    • 8f Bukard M. Henke H. Schmidt G. Waldmann H. Angew. Chem. Int. Ed. 1995; 34: 2402
    • 8g Geb J. Jansen M. Schmidt G. Waldmann H. Tetrahedron Lett. 1993; 34: 5867
  • 9 For a recent example, see: Kreituss I. Chen K.-Y. Eitel SH. Adam J.-M. Wuitschik G. Fettes A. Bode JW. Angew. Chem. Int. Ed. 2016; 55: 1553
    • 10a Wang D. Astruc D. Chem. Rev. 2015; 115: 6621
    • 10b Foubelo F. Yus M. Chem. Rec. 2015; 15: 907
    • 10c Noyori R. Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
  • 11 Uematsu N. Fujii A. Hashiguchi S. Ikariya T. Noyori R. J. Am. Chem. Soc. 1996; 118: 4916
    • 12a Roszkowski P. Wojtasiewicz K. Leniewski A. Maurin JK. Lis T. Czarnocki Z. J. Mol. Catal. A: Chem. 2005; 232: 143
    • 12b Roszkowski P. Maurin JK. Czarnocki Z. Tetrahedron: Asymmetry 2013; 24: 643
    • 12c Haraguchi N. Tsuru K. Arakawa Y. Itsuno S. Org. Biomol. Chem. 2009; 7: 69
    • 12d Vilhanova B. Vaclavik J. Sot P. Pechacek J. Zapal J. Pazout R. Maixner J. Kuzma M. Kacer P. Chem. Commun. 2016; 52: 362
    • 12e Shende VS. Deshpande SH. Shingote SK. Joseph A. Kelkar AA. Org. Lett. 2015; 17: 2878
    • 12f Tietze LF. Zhou Y. Töpken E. Eur. J. Org. Chem. 2000; 2247
    • 12g Santos LS. Pilli RA. Rawal VH. J. Org. Chem. 2004; 69: 1283
    • 12h Shankaraiah N. da Silva WA. Andrade CK. Z. Santos LS. Tetrahedron Lett. 2008; 49: 4289
    • 12i Shankaraiah N. Santos LS. Tetrahedron Lett. 2009; 50: 520
    • 12j Czarnocki SJ. Wojtasiewicz K. Jóźwiak AP. Maurin JK. Czarnocki Z. Drabowicz J. Tetrahedron 2008; 64: 3176
    • 12k Nicolaou KC. Dalby SM. Li S. Suzuki T. Chen DY. K. Angew. Chem. Int. Ed. 2009; 48: 7616
    • 12l Wu J. Wang F. Ma Y. Cui X. Cun L. Zhu J. Deng J. Yu B. Chem. Commun. 2006; 1766
    • 12m Evanno L. Ormala J. Pihko PM. Chem. Eur. J. 2009; 15: 12963
    • 12n Szawkało J. Czarnocki SJ. Zawadzka A. Wojtasiewicz K. Leniewski A. Maurin JK. Czarnocki Z. Drabowicz J. Tetrahedron: Asymmetry 2007; 18: 406
  • 13 ATH using Rh catalysts was already reported on other series of imines by Baker; see: Mao J. Baker DC. Org. Lett. 1999; 1: 841
  • 14 Tietze LF. Zhou Y. Angew. Chem. Int. Ed. 1999; 38: 2045

    • For representative examples, see:
    • 15a Schlatter A. Kundu MK. Woggon W.-D. Angew. Chem. Int. Ed. 2004; 43: 6731
    • 15b Ma Y. Liu H. Chen L. Cui X. Zhu J. Deng J. Org. Lett. 2003; 5: 2103
    • 16a Li C. Xiao J. J. Am. Chem. Soc. 2008; 130: 13208
    • 16b Morimoto T. Suzuki N. Achiwa K. Heterocycles 2004; 63: 2097
    • 16c Enthaler S. Erre G. Junge K. Addis D. Kadyrov R. Beller M. Chem. Asian J. 2008; 3: 1104
    • 17a Höhne M. Bornscheuer UT. ChemCatChem 2009; 1: 42
    • 17b Bornscheuer UT. Huisman GW. Kazlauskas RJ. Lutz S. Moore JC. Robins K. Nature 2012; 485: 185
    • 17c Turner NJ. Truppo MD. Biocatalytic Routes to Nonracemic Chiral Amines . In Chiral Amine Synthesis . Nugent TC. Wiley-VCH; Weinheim: 2010. Chap. 14, 431-459
    • 17d Scheller PN. Fademrecht S. Hofelzer S. Pleiss J. Leipold F. Turner NJ. Nestl BM. Hauer B. ChemBioChem 2014; 15: 2201
    • 17e Turner NJ. Wells A. ChemCatChem 2014; 6: 900
    • 18a Espinoza-Moraga M. Petta T. Vasquez-Vasquez M. Laurie VF. Moraes LA. B. Santos LS. Tetrahedron: Asymmetry 2010; 21: 1988
    • 18b Mirabal-Gallardo Y. Soriano M. dP. C. Santos LS. Tetrahedron: Asymmetry 2013; 24: 440
    • 18c Aleku GA. Man H. France SP. Leipold F. Hussain S. Toca-Gonzalez L. Marchington R. Hart S. Turkenburg JP. Grogan G. Turner NJ. ACS Catal. 2016; 6: 3880
    • 18d Leipold F. Hussain S. Ghislieri D. Turner NJ. ChemCatChem 2013; 5: 3505
    • 19a Huang Y. Walji AM. Larsen CH. MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 15051
    • 19b Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 19c Marinetti A. Voituriez A. Synlett 2010; 174
    • 19d Kampen D. Reisinger CM. List B. Top. Curr. Chem. 2010; 291: 395
    • 19e Gomez C. Betzer J.-F. Voituriez A. Marinetti A. ChemCatChem 2013; 5: 1055
    • 19f Gaunt MJ. Johansson CC. C. McNally A. Vo NT. Drug Discov. Today 2007; 12: 8
    • 19g Dalko PI. Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 19h Dalko PI. Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
    • 20a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 20b Terada M. Bull. Chem. Soc. Jpn. 2010; 83: 101
    • 20c Zamfir A. Schenker S. Freund M. Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
    • 20d Rueping M. Theissmann T. Chem. Sci. 2010; 1: 473
    • 20e Mutyala AK. Patil NT. Org. Chem. Front. 2014; 1: 582
    • 20f Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
    • 21a Cox ED. Cook JM. Chem. Rev. 1995; 95: 1797
    • 21b Stockigt J. Antonchick AP. Wu FR. Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
    • 21c Lorenz M. Van Linn ML. Cook JM. Curr. Org. Synth. 2010; 7: 189
    • 21d Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 21e Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 22a Taylor MS. Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
    • 22b Raheem IT. Thiara PS. Jacobsen EN. Org. Lett. 2008; 10: 1577
    • 22c Mittal N. Sun DX. Seidel D. Org. Lett. 2014; 16: 1012
    • 23a Seayad J. Seayad AM. List B. J. Am. Chem. Soc. 2006; 128: 1086
    • 23b Wanner MJ. van der Haas RN. S. de Cuba KR. van Maarseveen JH. Hiemstra H. Angew. Chem. Int. Ed. 2007; 46: 7485
    • 23c Sewgobind NV. Wanner MJ. Ingemann S. de Gelder R. van Maarseveen JH. Hiemstra H. J. Org. Chem. 2008; 73: 6405
    • 23d Huang D. Xu F. Lin X. Wang Y. Chem. Eur. J. 2012; 18: 3148
  • 24 Brak K. Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
  • 25 Min C. Mittal N. Sun DX. Seidel D. Angew. Chem. Int. Ed. 2013; 52: 14084
    • 26a Mergott DJ. Zuend SJ. Jacobsen EN. Org. Lett. 2008; 10: 745
    • 26b Kerschgens IP. Claveau E. Wanner MJ. Ingemann S. van Maarseveen JH. Hiemstra H. Chem. Commun. 2012; 48: 12243
    • 26c Piemontesi C. Wang Q. Zhu J. J. Am. Chem. Soc. 2016; 138: 11148
    • 26d Raheem IT. Thiara PS. Peterson EA. Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
    • 27a Xu F. Huang D. Han C. Shen W. Lin X. Wang Y. J. Org. Chem. 2010; 75: 8677
    • 27b Xing C.-H. Liao Y.-X. Ng J. Hu Q.-S. J. Org. Chem. 2011; 76: 4125
    • 28a Overvoorde LM. Grayson MN. Luo Y. Goodman JM. J. Org. Chem. 2015; 80: 2634
    • 28b Parra RD. Maresh J. Comp. Theor. Chem. 2016; 1082: 1
    • 29a Badillo JJ. Silva-Garcia A. Shupe BH. Fettinger JC. Franz AK. Tetrahedron Lett. 2011; 52: 5550
    • 29b Duce S. Pesciaioli F. Gramigna L. Bernardi L. Mazzanti A. Ricci A. Bartoli G. Bencivenni G. Adv. Synth. Catal. 2011; 353: 860
    • 29c Wanner MJ. Boots RN. A. Eradus B. de Gelder R. van Maarseveen JH. Hiemstra H. Org. Lett. 2009; 11: 2579
    • 29d Herle B. Wanner MJ. van Maarseveen JH. Hiemstra H. J. Org. Chem. 2011; 76: 8907
    • 29e Gobé V. Guinchard X. Org. Lett. 2014; 16: 1924
    • 29f Gobé V. Guinchard X. Chem. Eur. J. 2015; 21: 8511
    • 29g Gobé V. Dousset M. Retailleau P. Gandon V. Guinchard X. Adv. Synth. Catal. 2016; 358: 3960
    • 29h Cai Q. Liang XW. Wang SG. You SL. Org. Biomol. Chem. 2013; 11: 1602
    • 30a Galliford CV. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 30b Trost BM. Brennan MK. Synthesis 2009; 3003
    • 30c Ball-Jones NR. Badillo JJ. Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 30d Hong L. Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 30e Cheng D. Ishihara Y. Tan B. Barbas CF. ACS Catal. 2014; 4: 743
    • 30f Yu B. Yu D.-Q. Liu H.-M. Eur. J. Med. Chem. 2015; 97: 673
    • 30g Magné V. Blanchard F. Marinetti A. Voituriez A. Guinchard X. Adv. Synth. Catal. 2016; 358: 3355
  • 31 MacDonald JP. Badillo JJ. Arevalo GE. Silva-García A. Franz AK. ACS Comb. Sci. 2012; 14: 285
    • 32a Shao Z. Zhang H. Chem. Soc. Rev. 2009; 38: 2745
    • 32b Du Z. Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 32c Chen D.-F. Han Z.-Y. Zhou X.-L. Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
  • 33 Ascic E. Hansen CL. Le Quement ST. Nielsen TE. Chem. Commun. 2012; 48: 3345
    • 34a Muratore ME. Holloway CA. Pilling AW. Storer RI. Trevitt G. Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
    • 34b Holloway CA. Muratore ME. Storer RI. Dixon DJ. Org. Lett. 2010; 12: 4720
    • 34c Aillaud I. Barber DM. Thompson AL. Dixon DJ. Org. Lett. 2013; 15: 2946
    • 34d Muratore ME. Shi L. Pilling AW. Storer RI. Dixon DJ. Chem. Commun. 2012; 48: 6351
    • 34e Gregory AW. Jakubec P. Turner P. Dixon DJ. Org. Lett. 2013; 15: 4330
    • 35a Schwesinger R. Willaredt J. Schlemper H. Keller M. Schmitt D. Fritz H. Chem. Ber. 1994; 127: 2435
    • 35b O’Donnell MJ. Delgado F. Hostettler C. Schwesinger R. Tetrahedron Lett. 1998; 39: 8775
    • 36a Eschenbrenner-Lux V. Dückert H. Khedkar V. Bruss H. Waldmann H. Kumar K. Chem. Eur. J. 2013; 19: 2294
    • 36b Eschenbrenner-Lux V. Küchler P. Ziegler S. Kumar K. Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 2134
  • 37 Rueping M. Volla CM. R. RSC Adv. 2011; 1: 79
  • 38 Cai Q. Liang XW. Wang SG. Zhang JW. Zhang X. You SL. Org. Lett. 2012; 14: 5022
    • 39a Han Z.-Y. Xiao H. Chen X.-H. Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
    • 39b Wang C. Han Z.-Y. Luo H.-W. Gong L.-Z. Org. Lett. 2010; 12: 2266
    • 39c Patil NT. Mutyala AK. Konala A. Tella RB. Chem. Commun. 2012; 48: 3094
    • 39d Liu X.-Y. Xiao Y.-P. Siu F.-M. Ni L.-C. Chen Y. Wang L. Che C.-M. Org. Biomol. Chem. 2012; 10: 7208
    • 39e He Y.-P. Wu H. Chen D.-F. Yu J. Gong L.-Z. Chem. Eur. J. 2013; 19: 5232
    • 39f Patil NT. Raut VS. Tella RB. Chem. Commun. 2013; 49: 570
    • 39g Calleja J. Gonzalez-Perez AB. de Lera AR. Alvarez R. Fananas FJ. Rodriguez F. Chem. Sci. 2014; 5: 996
    • 39h Shinde VS. Mane MV. Vanka K. Mallick A. Patil NT. Chem. Eur. J. 2015; 21: 975
    • 40a Yin Q. Wang S.-G. You S.-L. Org. Lett. 2013; 15: 2688
    • 40b Fang F. Hua G. Shi F. Li P. Org. Biomol. Chem. 2015; 13: 4395
    • 40c Zhang H.-H. Wang Y.-M. Xie Y.-W. Zhu Z.-Q. Shi F. Tu S.-J. J. Org. Chem. 2014; 79: 7141
    • 40d Liu X. Meng Z. Li C. Lou H. Liu L. Angew. Chem. Int. Ed. 2015; 54: 6012
    • 40e Itoh T. Yokoya M. Miyauchi K. Nagata K. Ohsawa A. Org. Lett. 2003; 5: 4301
    • 40f Itoh T. Yokoya M. Miyauchi K. Nagata K. Ohsawa A. Org. Lett. 2006; 8: 1533
    • 40g Lalonde MP. McGowan MA. Rajapaksa NS. Jacobsen EN. J. Am. Chem. Soc. 2013; 135: 1891
    • 41a Rueping M. Antonchick AR. Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
    • 41b Ferry A. Stemper J. Marinetti A. Voituriez A. Guinchard X. Eur. J. Org. Chem. 2014; 188
    • 41c Stemper J. Isaac K. Pastor J. Frison G. Retailleau P. Voituriez A. Betzer J.-F. Marinetti A. Adv. Synth. Catal. 2013; 355: 3613
    • 41d Ouellet SG. Walji AM. MacMillan DW. C. Acc. Chem. Res. 2007; 40: 1327
    • 41e Tu X.-F. Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 11346
  • 42 Shirakawa S. Liu K. Ito H. Maruoka K. Chem. Commun. 2011; 47: 1515
  • 43 Christoffers K. Baro A. Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis. Wiley-VCH; Weinheim: 2005
    • 44a Ghislieri D. Green AP. Pontini M. Willies SC. Rowles I. Frank A. Grogan G. Turner NJ. J. Am. Chem. Soc. 2013; 135: 10863
    • 44b Ghislieri D. Houghton D. Green AP. Willies SC. Turner NJ. ACS Catal. 2013; 3: 2869