Synthesis 2017; 49(11): 2374-2388
DOI: 10.1055/s-0036-1588981
feature
© Georg Thieme Verlag Stuttgart · New York

Hexafluorosilicic Acid as a Novel Reagent for the Desilylation of Silylacetylenes: Application in Sequential Sonogashira Coupling and Click Reaction

Ádám Sinai
MTA-ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös University, Pázmány Péter stny. 1/a, 1117 Budapest, Hungary   eMail: novakz@elte.hu
,
Ádám Mészáros
MTA-ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös University, Pázmány Péter stny. 1/a, 1117 Budapest, Hungary   eMail: novakz@elte.hu
,
Ádám Balogh
MTA-ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös University, Pázmány Péter stny. 1/a, 1117 Budapest, Hungary   eMail: novakz@elte.hu
,
Márton Zwillinger
MTA-ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös University, Pázmány Péter stny. 1/a, 1117 Budapest, Hungary   eMail: novakz@elte.hu
,
Zoltán Novák*
MTA-ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös University, Pázmány Péter stny. 1/a, 1117 Budapest, Hungary   eMail: novakz@elte.hu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 28. Februar 2017

Accepted after revision: 03. März 2017

Publikationsdatum:
29. März 2017 (online)


Abstract

Hexafluorosilicic acid was utilized as a novel, cheap, readily available, and environmentally benign alternative reagent for the desilylation of 1-trimethylsilylacetylenes. The applicability of the aqueous solution of the hexafluorosilicic acid was demonstrated in the sequential coupling of aryl halides and ethynyltrimethylsilane to afford internal acetylenes, benzofurans, and triazoles in one-pot Sonogashira–Sonogashira­ and Sonogashira–CuAAC reactions.

Supporting Information

 
  • References

    • 2a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett. 1975; 4467
    • 2b Doucet H. Hierso J.-C. Angew. Chem. Int. Ed. 2007; 46: 834
    • 2c Chinchilla R. Najera C. Chem. Rev. 2007; 107: 874
    • 2d Chinchilla R. Najera C. Chem. Soc. Rev. 2011; 40: 5084
    • 2e Bakherad M. Appl. Organomet. Chem. 2013; 27: 125
    • 2f Wanga D. Gao S. Org. Chem. Front. 2014; 1: 556
    • 3a Zeni G. Larock RC. Chem. Rev. 2006; 106: 4644
    • 3b Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 3c Cacchi S. Fabrizi G. Goggiamani A. Curr. Org. Chem. 2006; 10: 1423
    • 3d Novák Z. Timári G. Kotschy A. Tetrahedron 2003; 59: 7509
    • 3e Csékei M. Novák Z. Timári G. Kotschy A. ARKIVOC 2004; (v): 285
    • 3f Csékei M. Novák Z. Kotschy A. Tetrahedron 2008; 64: 8992
    • 3g Heravi MM. Sadjadi S. Tetrahedron 2009; 65: 7761
    • 3h Rao RM. Reddy U. Alinakhi C. Mulakayala N. Alvala M. Arunasree MK. Poondra RR. Iqbal J. Pal M. Org. Biomol. Chem. 2011; 9: 3808
    • 4a Tornøe CW. Christensen C. Meldal M. J. Org. Chem. 2002; 67: 3057
    • 4b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596

    • For reviews see:
    • 4c Lutz J.-F. Angew. Chem. Int. Ed. 2007; 46: 1018
    • 4d Bock VC. Hiemstra H. van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
    • 4e Gil MV. Arévalo MJ. López Ó. Synthesis 2007; 1589
    • 4f Hein CD. Liu X.-M. Wang D. Pharm. Res. 2008; 25: 2216
    • 4g Singh MS. Chowdhury S. Koley S. Tetrahedron 2016; 72: 5257
    • 4h Li L. Zhang Z. Molecules 2016; 21: 1393
    • 4i Mandoli A. Molecules 2016; 21: 2109
    • 4j Wang C. Ikhlef D. Kahlal S. Saillard J.-Y. Astruc D. Coord. Chem. Rev. 2016; 316: 1
    • 4k Tiwari VK. Mishra BB. Mishra KB. Singh AS. Chen X. Chem. Rev. 2016; 116: 3086
    • 4l Hassan S. Müller TJ. J. Adv. Synth. Catal. 2015; 357: 617
    • 4m Sokolova NV. Nenajdenko VG. RSC Adv. 2013; 3: 16212
    • 4n Liang L. Astruc D. Coord. Chem. Rev. 2011; 255: 2933
    • 4o Hein JE. Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 5a Rossi R. Carpita A. Lezzi A. Tetrahedron 1984; 40: 2773
    • 5b Mio MJ. Kopel LC. Braun JB. Gadzikwa TL. Hull KL. Brisbois RG. Markworth CJ. Grieco PA. Org. Lett. 2002; 4: 3199
    • 5c Lo PK. Li KF. Wong MS. Cheah KW. J. Org. Chem. 2007; 72: 6672
    • 5d Severin R. Reimer J. Doye S. J. Org. Chem. 2010; 75: 3518
    • 5e Nishihara Y. Inoue E. Ogawa D. Okada Y. Noyori S. Takagi K. Tetrahedron Lett. 2009; 50: 4643
    • 5f Bellina F. Lessi M. Synlett 2012; 23: 773
    • 5g Mandali PK. Chand DK. Catal. Commun. 2014; 47: 40
    • 5h Levi L. Müller TJ. J. Chem. Soc. Rev. 2016; 45: 2825
    • 5i Levi L. Müller TJ. J. Eur. J. Org. Chem. 2016; 2907
    • 5j Götzinger AC. Müller TJ. J. Org. Biomol. Chem. 2016; 14: 3498
    • 5k Götzinger A. Theßeling FA. Hoppe C. Müller TJ. J. J. Org. Chem. 2016; 81: 10328
    • 6a Csékei M. Novák Z. Kotschy A. Tetrahedron 2008; 64: 975
    • 6b Novák Z. Nemes P. Kotschy A. Org. Lett. 2004; 6: 4917
    • 6c Nagy A. Novák Z. Kotschy A. J. Organomet. Chem. 2005; 690: 4453
    • 6d Chow H. Wan C. Low K. Yeung Y. J. Org. Chem. 2001; 66: 1910
    • 6e Yi C. Hua R. Zeng H. Huang Q. Adv. Synth. Catal. 2007; 349: 1738
    • 6f Ley KD. Li Y. Johnson J. Powell DH. Shanze KS. Chem. Commun. 1999; 1749
    • 7a Moon J. Jeong M. Nam H. Ju J. Moon JH. Jung HM. Lee S. Org. Lett. 2008; 10: 945
    • 7b Park K. Bae G. Moon J. Choe J. Song KH. Lee S. J. Org. Chem. 2010; 75: 6244
    • 8a Lőrincz K. Kele P. Novák Z. Synthesis 2009; 3527
    • 8b Rossy C. Majimel J. Delapierre MT. Fouquet E. Felpin F-X. J. Organomet. Chem. 2014; 755: 78
    • 8c Merkul E. Klukas F. Dorsch D. Gradler U. Greinerb HE. Müller TJ. J. Org. Biomol. Chem. 2011; 9: 5129
    • 8d Song JH. Choi P. Lee SE. Jeong KH. Kim T. Kang KS. Choi YS. Ham J. Eur. J. Org. Chem. 2013; 6249
    • 8e Abe H. Makida H. Inouye M. Tetrahedron 2012; 68: 4353
    • 8f Friscourt F. Boons G.-J. Org. Lett. 2010; 12: 4936
  • 9 Harsányi A. Sandford G. Green Chem. 2015; 17: 2081
    • 10a Dahlkea T. Ruffinera O. Cant R. Proc. Eng. 2016; 138: 231
    • 10b Pilcher AS. Hill DK. Shimshock SJ. Waltermire RE. DeShong P. J. Org. Chem. 1992; 57: 2492
    • 10c Pilcher AS. DeShong P. J. Org. Chem. 1993; 58: 5130
  • 11 Sinai Á. Mészáros Á. Gáti T. Kudar V. Palló A. Novák Z. Org. Lett. 2013; 15: 5654
  • 12 Ortega N. Urban S. Beiring B. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 1710
  • 13 Bernini R. Cacchi S. Fabrizi G. Forte G. Petrucci F. Prastaro A. Niembro S. Shafird A. Vallribera A. Green Chem. 2010; 12: 150
  • 14 Cantagrel G. Carne-Carnavalet B. Meyer C. Cossy J. Org. Lett. 2009; 11: 4262
  • 15 Kabalka GW. Wang L. Pagni RM. Tetrahedron 2001; 57: 8017
  • 16 Tyrell E. Whiteman L. Synthesis 2009; 829
  • 17 Peng C. Wang Y. Liu L. Wang H. Zhao J. Zhu Q. Eur. J. Org. Chem. 2010; 818
  • 18 Arcadi A. Bianchi G. Inesi A. Marinelli F. Rossi L. Eur. J. Org. Chem. 2008; 783
  • 19 Sorensen US. Pombo-Villar E. Tetrahedron 2005; 61: 2697
  • 20 Liang Y. Tang S. Zhang X.-D. Mao L.-Q. Xie Y.-X. Li J.-H. Org. Lett. 2006; 8: 3017
  • 21 Carril M. SanMartin R. Tellitu I. Dominguez E. Org. Lett. 2006; 8: 1467
  • 22 Nakatani S. Ikura M. Yamamoto S. Nishita Y. Itadani S. Habashita H. Hiromu S. Tsuneyuki O. Ohno H. Takashi K. Nakai H. Toda M. Bioorg. Med. Chem. 2006; 14: 5402
  • 23 Kondolff I. Doucet H. Santelli M. J. Heterocycl. Chem. 2008; 45: 109
  • 24 Díez-González S. Correa A. Cavallo L. Nolan SP. Chem. Eur. J. 2006; 12: 7558
  • 25 Hassner A. Stern M. Angew. Chem., Int. Ed. Engl. 1986; 25: 478
  • 26 Ankati H. Biehl E. Tetrahedron Lett. 2009; 50: 4677