Synlett 2017; 28(13): 1576-1580
DOI: 10.1055/s-0036-1588969
cluster
© Georg Thieme Verlag Stuttgart · New York

Ligand-Free, Copper-Catalyzed Aerobic Benzylic sp3 C–H Oxygenation

Hirotaka Tanaka
a  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
,
Kounosuke Oisaki*
a  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
,
Motomu Kanai*
a  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
b  ERATO, Kanai Life Science Catalysis Project, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
› Author Affiliations
Further Information

Publication History

Received: 16 January 2017

Accepted after revision: 16 February 2017

Publication Date:
08 March 2017 (online)

Abstract

A ligand-free and operationally simple copper-catalyzed aerobic benzylic sp3 C–H oxygenation was developed. The addition of tert-butyl hydroperoxide, either in a catalytic or stoichiometric amount, was key for activating stable C–H bonds under mild conditions to furnish the corresponding ketones or esters in moderate to excellent yield.

Supporting Information

 
  • References and Notes

    • 1a Yang L. Huang H. Chem. Rev. 2015; 115: 3468
    • 1b Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1c Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 1d He G. Wang B. Nack WA. Chen G. Acc. Chem. Res. 2016; 49: 635
    • 1e Brückl T. Baxter RD. Ishihara Y. Baran PS. Acc. Chem. Res. 2012; 45: 826
    • 1f Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 1g Osberger TJ. Rogness DC. Kohrt JT. Stepan AF. White MC. Nature 2016; 537: 214
    • 1h Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 1i Chen MS. White MC. Science 2007; 318: 783
    • 1j White MC. Science 2012; 335: 807
    • 2a Zhu X. Chiba S. Chem. Soc. Rev. 2016; 45: 4504
    • 2b Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 2c Gunasekarana N. Adv. Synth. Catal. 2015; 357: 1990
    • 2d Iosub AV. Stahl SS. ACS Catal. 2016; 6: 8201
    • 2e Klussmann M. Schweitzer-Chaput B. Synlett 2016; 27: 190
    • 3a Güell I. Ribas X. Eur. J. Org. Chem. 2014; 3188
    • 3b Hussain I. Capricho J. Yawerc MA. Adv. Synth. Catal. 2016; 358: 3320
    • 3c Corcoran EB. Pirnot MT. Lin S. Dreher SD. DiRocco DA. Davies IW. Buchwald SL. MacMillan DW. C. Science 2016; 355: 279

      Representative examples for Cr:
    • 4a Chung A. Miner MR. Richert KJ. Rieder CJ. Woerpel KA. J. Org. Chem. 2015; 80: 266

    • Representative examples for Co:
    • 4b da Silva MJ. Robles-Dutenhefner P. Menini L. Gusevskaya EV. J. Mol. Catal. A: Chem. 2003; 201: 71
    • 4c Pei L. Alper H. J. Mol. Catal. 1992; 72: 143

    • Representative examples for Cu:
    • 4d Li J. Zhang X. Yi H. Liu C. Liu R. Zhang H. Zhuo K. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1261
    • 4e Yu J.-W. Mao S. Wang Y.-Q. Tetrahedron Lett. 2015; 56: 1575
    • 4f Xu W. Jiang Y. Fu H. Synlett 2012; 23: 801
    • 4g De Houwer J. Tehrani KA. Maes BU. W. Angew. Chem. Int. Ed. 2012; 51: 2745

    • Representative examples for Mo:
    • 4h Murphy EF. Schneider M. Mallat T. Baiker A. Synthesis 2001; 547

    • Representative examples for Fe:
    • 4i Miao C. Zhao H. Zhao Q. Xia C. Sun W. Catal. Sci. Technol. 2016; 6: 1378

    • Transition-metal-free conditions:
    • 4j Tada N. Ban K. Yoshida M. Hirashima S.-i. Miura T. Itoh A. Tetrahedron Lett. 2010; 51: 6098
    • 4k Ishii Y. Nakayama K. Takeno M. Sakaguchi S. Iwahama T. Nishiyama T. J. Org. Chem. 1995; 60: 3934
    • 4l Rusch F. Schober J.-C. Brasholz M. ChemCatChem 2016; 8: 2881
    • 4m Ren L. Wang L. Lv Y. Gao S. Org. Lett. 2015; 17: 2078
    • 4n Dos Santos A. Kaim LE. Grimaud L. Org. Biomol. Chem. 2013; 11: 3282
    • 4o Zhang X. Ji X. Jiang S. Liu L. Weeks BL. Zhang Z. Green Chem. 2011; 13: 1891
    • 4p Wang H. Wang Z. Huang H. Tan J. Xu K. Org. Lett. 2016; 18: 5680
    • 4q Zhang Z. Gao Y. Liu Y. Li J. Zie H. Li H. Wang W. Org. Lett. 2015; 17: 5492
    • 4r Ma J. Hu Z. Li M. Zhao W. Hu X. Mo W. Hu B. Sun N. Shen Z. Tetrahedron 2015; 71: 6733
    • 4s Yi H. Bian C. Hu X. Niu L. Lei A. Chem. Commun. 2015; 51: 14046
    • 5a Jiang JA. Chen C. Huang JG. Liu HW. Cao S. Ji YF. Green Chem. 2014; 16: 1248
    • 5b Romano AM. Ricci M. J. Mol. Catal. A: Chem. 1997; 120: 71
    • 5c Sterckx H. Houwer JD. Mensch C. Caretti I. Tehrani KA. Herrebout WA. Doorslaer SV. Maes BU. W. Chem. Sci. 2016; 7: 346
    • 5d Liu J. Zhang X. Yi H. Liu C. Liu R. Zhang H. Zhuo K. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1261
    • 5e Zhang L. Ang GY. Chiba S. Org. Lett. 2011; 13: 1622
    • 5f Hayashi Y. Komiya N. Suzuki K. Murahashi S. Tetrahedron Lett. 2013; 54: 2706
    • 5g Yu J.-W. Mao S. Wang Y.-Q. Tetrahedron Lett. 2015; 56: 1575
    • 5h Wang Y.-F. Zhang F.-L. Chiba S. Synthesis 2012; 44: 1526
  • 6 Cu-Catalyzed Aerobic C–H Oxygenation of 1a; Typical Procedure: To a test tube charged with CuCl (2.0 mg, 0.02 mmol) and isochroman (1a; 251 μL, 2.0 mmol) in t-BuOH (20 mL) was added TBHP (5.0–6.0 M in decane, 10.9 μL, 0.6 mmol) and the mixture was stirred and heated at 50 °C for 12 h under open air. After cooling to room temperature, the reaction was quenched with 25% aqueous ammonia solution and water then the mixture was extracted with EtOAc. The separated organic layer was dried over Na2SO4 and products were concentrated after filtration. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give isochromanone (2a) as a colorless oil in 83% yield.

    • NMR data of all products were consistent with previously reported data.
    • 7a For 2ae: Dohi T. Takenaga N. Goto A. Fujioka H. Kita Y. J. Org. Chem. 2008; 73: 7365
    • 7b For 2g, 2b, and 2c: Komagawa H. Maejima Y. Nagano T. Synlett 2016; 27: 789
    • 7c For 2f: Zhao B. Lu X. Org. Lett. 2006; 8: 5987
    • 7d For 2h: Mineno T. Nikaido N. Kansui H. Chem. Pharm. Bull. 2009; 57: 1167
    • 7e For 2i: Gao HY. Ha CY. Synth. Commun. 2006; 36: 3283
    • 7f For 2k: Yanai H. Taguchi T. Chem. Commun. 2012; 48: 8967
    • 7g For 2j: Kinder MA. Kopf J. Margaretha P. Tetrahedron 2000; 56: 6763
    • 7h For 2l, 2m, 2n, and 2o: Zhang Z. Gao Y. Liu Y. Li J. Xie H. Li H. Wang W. Org. Lett. 2015; 17: 5492
    • 7i For 2p: Kobayashi K. Kondo Y. Org. Lett. 2009; 11: 2035
    • 7j For 2q: Yamamoto Y. Hasegawa H. Yamataka H. J. Org. Chem. 2011; 76: 4652
    • 7k For 3: Catino AJ. Nichols JM. Choi H. Gottipamula S. Doyle MP. Org. Lett. 2005; 7: 5167
  • 8 Boess E. Wolf LM. Malakar S. Salamone M. Bietti M. Thiel W. Klussmann M. ACS Catal. 2016; 6: 3253
  • 9 Boess E. Schmitz C. Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317
  • 10 Mukaiyama T. Miyoshi N. Kato J. Ohshima M. Chem. Lett. 1986; 1385
  • 11 For a review of organic peroxide rearrangement, see: Yaremenko IA. Vil VA. Demchuk DV. Terentev AO. Beilstein J. Org. Chem. 2016; 12: 1647