Synlett 2017; 28(09): 1075-1078
DOI: 10.1055/s-0036-1588947
letter
© Georg Thieme Verlag Stuttgart · New York

New Facile Synthesis of 2-Alkylthiopyrimidin-4(3H)-ones by Tandem Aza-Wittig Reaction Starting from the Baylis–Hillman Adducts

Jun Xiong
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Email: mwding@mail.ccnu.edu.cn
,
Xiao Wei
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Email: mwding@mail.ccnu.edu.cn
,
Ming-Wu Ding*
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Email: mwding@mail.ccnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 21 November 2016

Accepted after revision: 14 January 2017

Publication Date:
06 February 2017 (online)


Abstract

Iminophosphoranes reacted with CS2 at –5 °C to produce the isothiocyanates, which were treated with primary amine to give thioureas in 73–91% yields. The subsequent reaction of thioureas with alkyl bromides in the presence of solid K2CO3 produced 2-alkylthiopyrimidin-4(3H)-ones in 68–88% yield via tandem intramolecular cyclization–isomerization–S-alkylation.

Supporting Information

 
  • References and Notes

    • 1a Saladino R, Crestini C, Palamara AT, Danti MC, Manetti F, Corelli F, Garaci E, Botta M. J. Med. Chem. 2001; 44: 4554-4554
    • 1b Singh K, Singh K, Balzarini J. Singh K, Singh K, Balzarini J. Eur. J. Med. Chem. 2013; 67: 428-428
  • 2 Rashad AE, Shamroukh AH, Yousif NM, Salama MA, Ali HS, Ali MM, Mahmoud AE, El-Shahat M. Arch. Pharm. Chem. Life Sci. 2012; 345: 729-729
  • 3 Malothu N, Bhandaru JS, Kulandaivelu U, Jojula M, Adidala RR, Umadevi KR, Dusthackeer AV. N, Kaki VR, Akkinepally RR. Bioorg. Med. Chem. Lett. 2016; 26: 836-836
  • 4 Taylor EC, Zhou P, Tice CM, Lidert Z, Roemmele RC. Tetrahedron Lett. 1997; 38: 4339-4339
  • 5 Zhang Z, Wallace MB, Feng J, Stafford JA, Skene RJ, Shi L, Lee B, Aertgeerts K, Jennings A, Xu R, Kassel DB, Kaldor SW, Navre M, Webb DR, Gwaltney SL. II. J. Med. Chem. 2011; 54: 510-510
  • 6 Artico M, Massa S, Mai A, Marongiu ME, Piras G, Tramontano E, La Colla P. Antivir. Chem. Chemother. 1993; 4: 361-361
  • 7 Rotili D, Tarantino D, Nawrozkij MB, Babushkin AS, Botta G, Marrocco B, Cirilli R, Menta S, Badia R, Crespan E, Ballante F, Ragno R, Esté JA, Maga G, Mai A. J. Med. Chem. 2014; 57: 5212-5212
  • 8 Ramajayam R, Mahera NB, Neamati N, Yadav MR, Giridhar R. Arch. Pharm. Chem. Life Sci. 2009; 342: 710-710
  • 9 Zhang Y, Sun X, Fan N, Zhao J, Tu J, Chen X, Liu J, Wang X. Med. Chem. Commun. 2015; 6: 1438-1438
  • 10 Mai A, Artico M, Sbardella G, Massa S, Novellino E, Greco G, Loi AG, Tramontano E, Marongiu ME, La Colla P. J. Med. Chem. 1999; 42: 619-619
  • 11 Mugnaini C, Alongi M, Togninelli A, Gevarija H, Brizzi A, Manetti F, Bernardini C, Angeli L, Tafi A, Bellucci L, Corelli F, Massa S, Maga G, Samuele A, Facchini M, Clotet-Codina I, Armand-Ugón M, Esté JA, Botta M. J. Med. Chem. 2007; 50: 6580-6580
  • 12 Nawrozkij MB, Rotili D, Tarantino D, Botta G, Eremiychuk AS, Musmuca I, Ragno R, Samuele A, Zanoli S, Armand-Ugón M, Clotet-Codina I, Novakov IA, Orlinson BS, Maga G, Esté JA, Artico M, Mai A. J. Med. Chem. 2008; 51: 4641-4641
    • 13a Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447-5447
    • 13b Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1-1
    • 13c Singh V, Batra S. Tetrahedron 2008; 64: 4511-4511
  • 14 Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818-3818
  • 15 Yang Y, Ma C, Thumar NJ, Hu W. J. Org. Chem. 2016; 81: 8537-8537
  • 16 Basavaiah D, Pal S, Veeraraghavaiah G, Bharadwaj KC. Tetrahedron 2015; 71: 4659-4659
  • 17 Bharadwaj KC, Tiwari DK. Tetrahedron 2016; 72: 312-312
    • 18a Wei H, Li Y, Xiao K, Cheng B, Wang H, Hu L, Zhai H. Org. Lett. 2015; 17: 5974-5974
    • 18b Hu Y, Li X, Wan B. Tetrahedron 2015; 71: 6935-6935
    • 18c Welsch SJ, Umkehrer M, Kalinski C, Ross G, Burdack C, Kolb J, Wild M, Ehrlich A, Wessjohann LA. Tetrahedron Lett. 2015; 56: 1025-1025
    • 18d Ramachary DB, Shruthi KS. J. Org. Chem. 2016; 81: 2405-2405
    • 18e Qu F, Hu R.-F, Gao L, Wu J, Cheng X.-H, Wang S, He P. Synthesis 2015; 47: 3701-3701
    • 18f Nishimura Y, Cho H. Synlett 2015; 26: 233-233
  • 19 Palacios F, Alonso C, Aparicio D, Rubiales G, Santos JM. Tetrahedron 2007; 63: 523-523
    • 22a Yadav JS, Gupta MK, Pandey SK, Reddy BV. S, Sarma AV. S. Tetrahedron Lett. 2005; 46: 2761-2761
    • 22b Sá MM. J. Braz. Chem. Soc. 2003; 14: 1005-1005
  • 23 General Procedure for the Preparation of Thioureas 8 To the azides 4 (2 mmol) in dry CH2Cl2 (10 mL) was added dropwise Ph3P (0.52 g, 2 mmol) in CH2Cl2 (5 mL) under N2. The mixture was stirred at r.t. for 1–2 h to form iminophosphorane (TLC monitoring). The CS2 (1.52 g, 20 mmol) was then added at –5 °C, and the mixture was continuing stirred at –5 °C for 4–6 h. After the reaction was completed, the solvent and excess CS2 were removed in reduced pressure. Primary amine (2 mmol) was added to the residue in CH2Cl2 (10 mL), and the mixture was stirred overnight at r.t. The solvent was removed, and the residue was purified by column chromatography (PE–EtOAc, 4:1) to give thioureas 8. Compound 8a: light yellow solid (yield 0.53 g, 87%), mp 72–74 °C. 1H NMR (600 MHz, CDCl3): δ = 7.85 (s, 1 H, =CH), 7.42–7.38 (m, 5 H, Ar–H), 6.59 (br, 2 H, 2NH), 4.49 (br, 2 H, NCH2), 3.82 (s, 3 H, OCH3), 3.38 (br, 2 H, NCH2), 1.49–1.29 (m, 4 H, 2CH2), 0.89 (t, J = 7.2 Hz, 3 H, CH3). 13C NMR (150 MHz, CDCl3): δ = 181.1, 168.4, 143.5, 133.8, 129.5, 129.4, 128.8, 127.2, 52.5, 44.6, 41.2, 30.8, 19.9, 13.7. HRMS: m/z calcd for [C16H22N2O2S + H]+: 307.1475; found: 307.1479.
  • 24 General Procedure for the Preparation of 2-Alkylthiopyrimidin-4(3H)-ones 11 To the thioureas 8 (2 mmol) in MeCN (10 mL) was added solid K2CO3 (0.28 g, 2 mmol). The mixture was stirred at 50 °C for 5–6 h to form 2-thioxopyrimidin-4(1H)-ones 10 (TLC monitoring). The alkyl bromide (2 mmol) was then added with continuing stir. After the reaction was completed, the solid was filtered. The filtrate was removed, and the residue was purified by column chromatography (PE–EtOAc, 20:1) to give 2-alkylthiopyrimidin-4(3H)-ones 11. Compound 11m: white solid (yield 0.502 g, 75%), mp 102–104 °C. 1H NMR (600 MHz, CDCl3): δ = 7.61 (s, 1 H, Ar–H), 7.51–7.21 (m, 10 H, Ar–H), 3.77 (s, 2 H, CH2), 2.97 (t, J = 7.8 Hz, 2 H, SCH2), 1.66–1.60 (m, 2 H, CH2), 0.94 (t, J = 7.2 Hz, 3 H, CH3). 13C NMR (150 MHz, CDCl3): δ = 162.4, 161.4, 149.7, 138.8, 135.9, 129.8, 129.7, 129.1, 128.5, 128.4, 126.3, 123.4, 34.2, 33.6, 21.9, 13.4. HRMS: m/z calcd for [C20H20N2OS + H]+: 337.1369; found: 337.1373.
  • 25 General Procedure for the Preparation of 2-Alkylthiopyrimidin-4(3H)-ones 11 (R1 = alkyl) at Room Temperature To the thioureas 8 (2 mmol) and alkyl bromides (2 mmol) in MeCN (10 mL) was added solid K2CO3 (0.28 g, 2 mmol). The mixture was stirred at r.t. for 24–48 h. After the reaction was completed, the solid was filtered. The filtrate was removed, and the residue was purified by column chromatography (PE–EtOAc, 20:1) to give 2-alkylthiopyrimidin-4(3H)-ones 11. Compound 11a: colorless oil (yield 0.53 g, 84%). 1H NMR (600 MHz, CDCl3): δ = 7.50 (s, 1 H, Ar–H), 7.29–7.19 (m, 5 H, Ar–H), 4.01 (t, J = 7.8 Hz, 2 H, NCH2), 3.73 (s, 2 H, CH2), 3.10 (t, J =7.2 Hz, 2 H, SCH2), 1.73–1.71 (m, 4 H, 2CH2), 1.43–1.39 (m, 2 H, CH2), 1.03–0.95 (m, 6 H, 2 CH3). 13C NMR (150 MHz, CDCl3): δ = 162.1, 160.0, 149.2, 138.9, 129.0, 128.4, 126.2, 122.4, 44.7, 33.8, 33.7, 29.3, 22.1, 20.2, 13.7, 13.4. HRMS: m/z calcd for [C18H24N2OS + H]+: 317.1682; found: 317.1683.