Synlett 2017; 28(06): 719-723
DOI: 10.1055/s-0036-1588927
letter
© Georg Thieme Verlag Stuttgart · New York

Iridium-Catalyzed Vinylation of Carbazole Derivatives with Vinyl Acetate

Jungo Kimura
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Email: [email protected]
,
Seiya Nakamichi
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Email: [email protected]
,
Shinji Ogawa
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Email: [email protected]
,
Yasushi Obora*
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 02 November 2016

Accepted after revision: 02 December 2016

Publication Date:
10 January 2017 (online)


Abstract

We report a practical method for the synthesis of vinylcarbazoles via iridium-catalyzed vinylation of carbazoles with vinyl acetate as the vinyl source. This simple and efficient reaction using an iridium catalyst provides a convenient method for producing monomers for the synthesis of poly(N-vinylcarbazole)s, which are used in electroluminescent devices.

Supporting Information

 
  • References and Notes

    • 1a Grazulevicicius JV, Strohriegl P, Pielichowski J, Pielichowski K. Prog. Polym. Sci. 2003; 28: 1297
    • 1b Hu B, Yang Z, Karasz FE. J. Appl. Phys. 1994; 76: 2419
    • 1c Sanetra J, Barta P, Niziol S, Chrzaszcz R, Pielichowski J. Synth. Met. 1998; 94: 123
    • 1d Sanetra J, Annatys P, Chrzaszcz R, Pielichowski J, Barta P, Niziol S, Sahraoui B. Synth. Met. 1999; 101: 82
    • 1e Angiuli M, Ciardelli F, Colligiani A, Greco F, Romano A, Ruggeri G, Tombari E. Appl. Opt. 2006; 30: 7928
    • 1f Kawakami T, Sonoda N. Appl. Phys. Lett. 1993; 62: 2167
    • 1g Mizuno Y, Takasu I, Uchikoga S, Enomoto S, Sawabe T, Amano A, Wada A, Sugizaki T, Yoshida J, Ono T, Adachi C. J. Phys. Chem. C. 2012; 116: 20681
    • 2a Knolker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
    • 2b Schmidt AW, Reddy KR, Knolker H.-J. Chem. Rev. 2012; 112: 3193
    • 2c Li H, Boonnak N, Padwa A. J. Org. Chem. 2011; 76: 9488
    • 2d Maki Y, Mori H, Endo T. Macromolecules 2007; 40: 6119
    • 2e Oishi S, Watanabe T, Sawada J, Asai A, Ohno H, Fujii N. J. Med. Chem. 2010; 53: 5054
    • 2f Takeuchi T, Oishi S, Watanabe T, Ohno H, Sawada J, Matsuno K, Asai A, Asada N, Kitaura K, Fujii N. J. Med. Chem. 2011; 54: 4839
    • 3a Clemo GR, Perkin WH. J. Chem. Soc. 1924; 125: 1804
    • 3b Pielichowski J, Kyziol J. J. Polym. Sci. Pol. Lett. 1974; 12: 257
    • 3c Pielichowski J, Kyziol J. J. Polym. Sci. Pol. Lett. 1985; 23: 387
    • 4a Lebedev AY, Izmer VV, Kazyul’kin DN, Beletskaya IP, Voskoboynikov AZ. Org. Lett. 2002; 4: 623
    • 4b Liao Q, Wang Y, Zhang L, Xi C. J. Org. Chem. 2009; 74: 6371
    • 4c Li H, Boonnak N, Padwa A. Tetrahedron Lett. 2011; 52: 2062
  • 5 Davidge H. J. Appl. Chem. 1959; 9: 241
  • 6 Inoue N, Yamada Y. JP 2015101572, 2015
  • 7 Ondrus AE, Movassaghi M. J. Org. Chem. 2005; 70: 8683
  • 8 Zhang Y, Donahue JP, Li C.-J. Org. Lett. 2007; 9: 627
  • 9 Das UK, Bhattacharjee M. Chem. Eur. J. 2012; 18: 5180
  • 10 Lam PY. S, Vincent G, Bonne D, Clark CG. Tetrahedron. Lett. 2003; 44: 4927
  • 11 Takeda D, Hirano K, Satoh T, Miura M. Org. Lett. 2013; 15: 1242
  • 12 Wu G, Su W. Org. Lett. 2013; 15: 5278
    • 13a Roche M, Bignon J, Brion J.-D, Hamze A, Alami M. J. Org. Chem. 2014; 79: 7583
    • 13b Roche M, Frison G, Brion J.-D, Provot O, Hamze A, Alami M. J. Org. Chem. 2013; 78: 8485
    • 14a Adhikari RM, Shah BK, Palayangoda SS, Neckers DC. Langmuir 2009; 25: 2402
    • 14b Adhikari RM, Mondal R, Shah BK, Neckers D. J. Org. Chem. 2007; 72: 4727
    • 14c Wan Y, Yan L, Zhao Z, Ma X, Guo Q, Jia M, Lu P, Ramous-Ortiz G, Maldonado JL, Rodriguez M, Xia A. J. Phys. Chem. B 2010; 114: 11737
    • 14d Yang Z, Chi Z, Yu T, Zhang X, Chen M, Xu B, Liu S, Zhang Y, Xu J. J. Mater. Chem. 2009; 19: 5541
    • 14e Panthi K, Adhikari RM, Kinstle TH. J. Phys. Chem. A 2010; 114: 4550
    • 15a Knolker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
    • 15b Schmidt AW, Reddy KR, Knolker H.-J. Chem. Rev. 2012; 112: 3193
    • 15c Knolker H.-J. Chem. Lett. 2009; 38: 8
    • 16a Choi S, Chatterjee T, Choi WJ, You Y, Cho EJ. ACS Catal. 2015; 5: 4796
    • 16b Suzuki C, Hirano K, Satoh T, Miura M. Org. Lett. 2015; 17: 1597
    • 16c Takamatsu K, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 2892
    • 16d Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
    • 16e Tsang WC. P, Zheng N, Bucwald SL. J. Am. Chem. Soc. 2005; 127: 14560
    • 16f Tsang WC. P, Zheng N, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
    • 17a Gensch T, Ronnefahrt M, Czerwonka R, Jager A, Kataeva O, Bauer I, Knolker H.-J. Chem. Eur. J. 2012; 18: 770
    • 17b Gruner KK, Knolker H.-J. Org. Biomol. Chem. 2008; 6: 3902
    • 17c Forke R, Jager A, Knolker H.-J. Org. Biomol. Chem. 2008; 6: 2481
    • 17d Kumar VP, Gruner KK, Kataeva O, Knolker H.-J. Angew. Chem. Int. Ed. 2013; 52: 11073
    • 17e Hesse R, Gruner KK, Kataeva O, Schmidt AE, Knolker H.-J. Chem. Eur. J. 2013; 19: 14098
    • 18a Goo D.-Y, Woo SK. Org. Biomol. Chem. 2016; 14: 122
    • 18b Bedford RB, Betham M. J. Org. Chem. 2006; 71: 9403
    • 18c Ackermann L, Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627
    • 18d Jean DJ. S, Poon SF, Schwarzbach JL. Org. Lett. 2007; 9: 4894
    • 18e Laha JK, Petrou P, Cuny GD. J. Org. Chem. 2009; 74: 3152
    • 18f Chakrabarty S, Chatterjee I, Tebben L, Studer A. Angew. Chem. Int. Ed. 2013; 52: 2968
    • 19a Yu J.-Y, Kuwano R. Angew. Chem. Int. Ed. 2009; 48: 7217
    • 19b Lindh J, Savmarker J, Nilsson P, Sjoberg PJ. R, Larhed M. Chem. Eur. J. 2009; 15: 4630
    • 19c Otley KD, Ellman JA. Org. Lett. 2015; 17: 1332
    • 19d Mei S.-T, Jiang K, Wang N.-J, Shuai L, Yuan Y, Wei Y. Eur. J. Org. Chem. 2015; 6135
  • 20 Xu J, Fu Y, Xiao B, Gong T, Guo Q. Tetrahedron Lett. 2010; 51: 5476
  • 21 Yonehara K, Okuka S. JP 2010184923, 2010
    • 22a Suzuki T. Chem. Rev. 2011; 111: 1825
    • 22b Obora Y. ACS Catal. 2014; 4: 3972
    • 22c Huang F, Liu Z, Yu Z. Angew. Chem. Int. Ed. 2016; 55: 862
    • 23a Ogawa S, Obora Y. Chem. Commun. 2014; 50: 2491
    • 23b Obora Y, Ogawa S, Yamamoto N. J. Org. Chem. 2012; 77: 9429
    • 23c Obora Y, Anno Y, Okamoto R, Matsu-ura T, Ishii Y. Angew. Chem. Int. Ed. 2011; 50: 8618
    • 23d Matsu-ura T, Sakaguchi S, Obora YT, Ishii Y. J. Org. Chem. 2006; 71: 8308
    • 23e Koda K, Matsu-ura T, Obora YT, Ishii Y. Chem. Lett. 2009; 38: 838
    • 23f Yamamoto N, Obora Y, Ishii Y. Chem. Lett. 2009; 38: 1106
    • 23g Izumi A, Obora Y, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2006; 47: 9199
    • 23h Taguchi K, Nakagawa H, Hirabayashi T, Sakaguchi S, Ishii Y. J. Am. Chem. Soc. 2004; 126: 72
    • 23i Morita M, Obora Y, Ishii Y. Chem. Commun. 2007; 2850
    • 24a Hirabayashi T, Sakaguchi S, Ishii Y. Adv. Synth. Catal. 2005; 347: 872
    • 24b Sakaguchi S, Mizuta T, Ishii Y. Org. Lett. 2006; 12: 2459
    • 24c Obora Y, Hatanaka S, Ishii Y. Org. Lett. 2009; 11: 3510
    • 24d Hatanaka S, Obora Y, Ishii Y. Chem. Eur. J. 2010; 16: 1883
    • 24e Mizuta T, Sakaguchi S, Ishii Y. J. Org. Chem. 2005; 70: 2195
    • 25a Aramoto H, Obora Y, Ishii Y. J. Org. Chem. 2009; 74: 628
    • 25b Taguchi K, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2005; 46: 4539
    • 25c Nakagawa H, Sakaguchi S, Ishii Y. Chem. Commun. 2003; 502
    • 26a Okimoto Y, Sakaguchi S, Ishii Y. J. Am. Chem. Soc. 2002; 124: 1590
    • 26b Obora Y, Ishii Y. Org. Synth. 2012; 89: 307
    • 26c Morita M, Sakaguchi S, Ishii Y. J. Org. Chem. 2006; 71: 6285
    • 26d Hirabayashi T, Sakaguchi S, Ishii Y. Org. Synth. 2005; 82: 55
    • 26e Nagasawa H, Okimoto Y, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2003; 44: 103
  • 27 Experimental Procedure of the Reaction of 1d with 2 (Table 2, Entry 4) A mixture of [IrCl(cod)]2 (6.7 mg, 0.01 mmol), Na2CO3 (127 mg, 1.2 mmol), 1d (325 mg, 1 mmol), and 2 (430 mg, 5 mmol) in toluene (1 mL) was stirred at 100 °C for 15 h under Ar. The product 3d was isolated by column chromatography (230–400 mesh silica gel neutralized with 5% Et3N in n-hexane) in 61% yield (214 mg). Compound 3d: white solid, mp 101–105 °C. 1H NMR (CDCl3): δ = 7.79–7.70 (m, 4 H), 7.37–7.34 (m, 2 H), 7.04 (dd, J = 15.6, 9.2 Hz, 1 H), 5.50 (dd, J = 15.6, 0.9 Hz, 1 H), 5.21 (dd, J = 9.2, 0.9 Hz, 1 H). 13C NMR (CDCl3): δ = 140.3 (C), 128.8 (CH), 124.3 (CH), 122.3 (C), 121.4 (CH), 120.3 (C), 113.8 (CH), 105.4 (CH2). IR (KBr): 3400, 3080, 2920, 2850, 1590, 1450, 1320, 1060, 790 cm–1. GC–MS (EI): m/z (%) = 350 (100) [M] +, 191 (94), 349 (51), 352 (49), 164 (32). HRMS(EI): m/z calcd for C14H9Br2N [M]+: 348.9102; found: 348.9092.
  • 28 Dobruchowska E, Glowacki I, Ulanski J, Sanetra J, Pielichowski J. Chem. Phys. 1994; 76: 2419
  • 29 Pawluc P, Franczyk A, Walkowiak J, Herczycho G, Kubicki M, Marciniec B. Org. Lett. 2011; 13: 1976
  • 30 Bordwell FG. Acc. Chem. Res. 1988; 21: 456