Synlett, Inhaltsverzeichnis Synlett 2017; 28(06): 734-740DOI: 10.1055/s-0036-1588924 letter © Georg Thieme Verlag Stuttgart · New YorkMagnetic Metal–Organic Framework CoFe2O4@SiO2@IRMOF-3 as an Efficient Catalyst for One-Pot Synthesis of Functionalized Dihydro-2-oxopyrroles Jia-Nan Zhang College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. of China eMail: zhanhui@hebtu.edu.cn , Xiu-Huan Yang College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. of China eMail: zhanhui@hebtu.edu.cn , Wei-Jie Guo College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. of China eMail: zhanhui@hebtu.edu.cn , Bo Wang College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. of China eMail: zhanhui@hebtu.edu.cn , Zhan-Hui Zhang* College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. of China eMail: zhanhui@hebtu.edu.cn› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A magnetic metal–organic framework-based catalyst CoFe2O4@SiO2@IRMOF-3 was prepared and identified as an efficient catalyst for the synthesis of a variety of functionalized dihydro-2-oxopyrroles by a one-pot, four-component reaction of a dialkyl acetylenedicarboxylate, an aryl amine, formaldehyde, and optionally a second amine or diamine at room temperature. The catalyst was magnetically separated and recovered without significant loss of its catalytic efficiency, even after eight reaction cycles. Key words Key wordsmagnetic separation - metal–organic framework - nanostructures - multicomponent reactions - dihydropyrroles - cobalt catalysis Volltext Referenzen References and Notes 1 Goh W.-K, Gardner CR, Chandra Sekhar KV. G, Biswas NN, Nizalapur S, Rice SA, Willcox M, Black DSt.C, Kumar N. Bioorg. Med. Chem. 2015; 23: 7366 2 Starosyla SA, Volynets GP, Lukashov SS, Gorbatiuk OB, Golub AG, Bdzhola VG, Yarmoluk SM. Bioorg. Med. Chem. 2015; 23: 2489 3 Jung ME, Byun BJ, Kim H.-M, Lee JY, Park J.-H, Lee N, Son YH, Choi SU, Yang K.-M, Kim S.-J, Lee K, Kim Y.-C, Choi G. Bioorg. Med. Chem. Lett. 2016; 26: 2719 4 Zhu Q, Gao L, Chen Z, Zheng S, Shu H, Li J, Jiang H, Liu S. Eur. J. Med. Chem. 2012; 54: 232 5 Prajapti SK, Nagarsenkar A, Guggilapu SD, Gupta KK, Allakonda L, Jeengar MK, Naidu VG. M, Babu BN. Bioorg. Med. Chem. Lett. 2016; 26: 3024 6 Ye Y, Fang F, Li Y. Bioorg. Med. Chem. Lett. 2015; 25: 597 7 Lv LY, Zheng S, Cai X, Chen Z, Zhu Q, Liu S. ACS Comb. Sci. 2013; 15: 183 8 Sajadikhah SS, Maghsoodlou MT, Hazeri N. Chin. Chem. Lett. 2014; 25: 58 9 Hazeri N, Sajadikhah SS, Maghsoodlou MT, Norouzi M, Moein M, Mohamadian-Souri S. J. Chem. Res. 2013; 37: 550 10 Hazeri N, Sajadikhah SS, Maghsoodlou MT, Mohamadian-Souri S, Norouzi M, Moein M. J. Chin. Chem. Soc. (Taipei) 2014; 61: 217 11 Sajadikhah SS, Maghsoodlou MT, Hazeri N, Moein M, Norouzi M, Mohamadian-Souri S. Lett. Org. Chem. 2014; 11: 268 12 Bamoniri A, Mirjlili BB. F, Tarazian R. Monatsh. Chem. 2015; 146: 2107 13 Sajadikhah SS, Hazeri N. Res. Chem. Intermed. 2014; 40: 737 14 Sajadikhah SS, Maghsoodlou MT, Hazeri N. Res. Chem. Intermed. 2015; 41: 2503 15 Sajadikhah SS, Maghsoodlou MT, Hazeri N, Mohamadian-Souri S. Res. Chem. Intermed. 2016; 42: 2805 16 Ghorbani-Vaghei R, Azarifar D, Dalirana S, Oveisi AR. RSC Adv. 2016; 6: 29182 17 Mirjalili BB. F, Reshquiyea RZ. RSC Adv. 2015; 5: 15566 18 Sajadikhah SS, Maghsoodlou MT. RSC Adv. 2014; 4: 43454 19 Khan A, Ghosh A, Khan MM. Tetrahedron Lett. 2012; 53: 2622 20 Bai Y, Dou YB, Xie L.-H, Rutledge W, Li J.-R, Zhou H.-C. Chem. Soc. Rev. 2016; 45: 2327 21 Pei X, Chen Y, Li S, Zhang S, Feng X, Zhou J, Wang B. Chin. J. Chem. 2016; 34: 157 22 Nandasiri MI, Jambovane SR, McGrail BP, Schaef HT, Nune SK. Coord. Chem. Rev. 2016; 311: 38 23 Stavila V, Talin AA, Allendorf MD. Chem. Soc. Rev. 2014; 43: 5994 24 Bradshaw D, Garai A, Huo J. Chem. Soc. Rev. 2012; 41: 2344 25 Hu Z, Deibert BJ, Li J. Chem. Soc. Rev. 2014; 43: 5815 26 Huxford RC, Della Rocca J, Lin W. Curr. Opin. Chem. Biol. 2010; 14: 262 27 Della Rocca J, Liu DM, Lin W. Acc. Chem. Res. 2011; 44: 957 28 Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Chem. Soc. Rev. 2015; 44: 6804 29 Bai C, Li A, Yao XF, Liu H, Li Y. Green Chem. 2016; 18: 1061 30 Dhakshinamoorthy A, Asiri AM, Garcia H. Chem. Soc. Rev. 2015; 44: 1922 31 Taher A, Lee D.-J, Lee B.-K, Lee I.-M. Synlett 2016; 27: 1433 32 Wang J, Yang M, Dong W, Jin Z, Tang J, Fan S, Lu Y, Wang G. Catal. Sci. Technol. 2016; 6: 161 33 Tharun J, Bhin K.-M, Roshan R, Kim DW, Kathalikkattil AC, Babu R, Ahn HY, Won YS, Park D.-W. Green Chem. 2016; 18: 2479 34 Dhakshinamoorthy A, Asiri AM, Garcia H. Tetrahedron 2016; 72: 2895 35 Ho SL, Yoon IC, Cho CS, Choi H.-J. J. Organomet. Chem. 2015; 791: 13 36 Dhakshinamoorthy A, Alvaro M, Garcia H. Adv. Synth. Catal. 2010; 352: 3022 37 Wee LH, Bonino F, Lamberti C, Bordiga S, Martens JA. Green Chem. 2014; 16: 1351 38 Zhang Z, Chen J, Bao Z, Chang G, Xing H, Ren Q. RSC Adv. 2015; 5: 79355 39 Jiang S, Yan J, Habimana F, Ji S. Catal. Today 2016; 264: 83 40 Pérez-Mayoral E, Čejka J. ChemCatChem 2011; 3: 157 41 Puthiaraj P, Ramu A, Pitchumani K. Asian J. Org. Chem. 2014; 3: 784 42a Azizi K, Azarnia J, Karimi M, Yazdani E, Heydari A. Synlett 2016; 27: 1810 42b Fujita K.-i, Fujii A, Sato J, Yasuda H. Synlett 2016; 27: 1941 42c Ghanbaripour R, Samadizadeh M, Honarpisheh G, Abdolmohammadi M. Synlett 2015; 26: 2117 43a Li X, Zhang W, Liu Y, Li R. ChemCatChem 2016; 8: 1111 43b Wang R, Zhang C, Wang S, Zhou Y. Huaxue Jinzhan 2015; 27: 945 ; DOI: 10.7536/PC150110 44a Li P.-H, Li B.-L, An Z.-M, Mo L.-P, Cui Z.-S, Zhang Z.-H. Adv. Synth. Catal. 2013; 355: 2952 44b Lu J, Li X.-T, Ma E.-Q, Mo L.-P, Zhang Z.-H. ChemCatChem 2014; 6: 2854 44c Li B.-L, Zhang M, Hu H.-C, Du X, Zhang Z.-H. New J. Chem. 2014; 38: 2435 44d Lu J, Ma E.-Q, Liu Y.-H, Li Y.-M, Mo L.-P, Zhang Z.-H. RSC Adv. 2015; 5: 59167 44e Zhang M, Lu J, Zhang J.-N, Zhang Z.-H. Catal. Commun. 2016; 78: 26 44f Zhao X.-N, Hu H.-C, Zhang F.-J, Zhang Z.-H. Appl. Catal., A 2014; 482: 258 44g Zhao X.-N, Hu G.-F, Tang M, Shi T.-T, Guo X.-L, Li T.-T, Zhang Z.-H. RSC Adv. 2014; 4: 51089 45a Li B.-L, Li P.-H, Fang X.-N, Li C.-X, Sun J.-L, Mo L.-P, Zhang Z.-H. Tetrahedron 2013; 69: 7011 45b Guo R.-Y, Wang P, Wang G.-D, Mo L.-P, Zhang Z.-H. Tetrahedron 2013; 69: 2056 45c Guo R.-Y, An Z.-M, Mo L.-P, Yang S.-T, Liu H.-X, Wang S.-X, Zhang Z.-H. Tetrahedron 2013; 69: 9931 45d Liu P, Hao J, Zhang Z. Chin. J. Chem. 2016; 34: 637 45e Li X.-T, Liu Y.-H, Liu X, Zhang Z.-H. RSC Adv. 2015; 5: 25625 45f Li X.-T, Zhao A.-D, Mo L.-P, Zhang Z.-H. RSC Adv. 2014; 4: 51580 45g Guo R.-Y, An Z.-M, Mo L.-P, Wang R.-Z, Liu H.-X, Wang S.-X, Zhang Z.-H. ACS Comb. Sci. 2013; 15: 557 46 Magnetic CoFe2O4@SiO2@IRMOF-3 Nanoparticles CoFe2O4 magnetic nanoparticles (NPs) were synthesized by chemical co-precipitation from FeCl3·6H2O and CoCl2·6H2O. The surface of the CoFe2O4 NPs was coated with a layer of SiO2 by adding distilled H2O (80 mL) to the purified CoFe2O4 NPs (1 g), heating for 1 h at 40 °C, adding concd aq NH3 (1.5 mL), stirring at 40 °C for 30 min, adding TEOS (1.0 mL), and stirring continuously for 24 h. The mixture was then cooled to r.t. and the silica-coated NPs were collected by using a permanent magnet, washed three times with distilled H2O and EtOH, and dried at 60 °C under vacuum for 6 h. A versatile step-by-step assembly strategy was used to fabricate the porous CoFe2O4@SiO2@IRMOF-3 core–shell nanoparticles. Briefly, the CoFe2O4@SiO2 NPs (0.5 g) were dispersed in a solution of Zn(NO3)2 (1.7 g) and H2NH2BDC (0.4 g) in dry DMF (50 mL), and the mixture was stirred at r.t. for 20 min. The solution was then transferred to a Teflon-lined steel autoclave, which was sealed and kept at 100 °C for 20 h. The resulting brown solid was collected with a permanent magnet, washed with EtOH, and dried under vacuum at 60 °C for 6 h. 47 Pyrrolidinones 4a–h; General Procedure A mixture of the dialkyl acetylenedicarboxylate 1 (1 mmol), aromatic amine 2 (2 mmol), 37% aq HCHO (3, 5 mmol), and CoFe2O4@SiO2@IRMOF-3 (0.02 g) in MeOH (3 mL) was stirred at r.t. for the appropriate time (Table 2). When the reaction was complete (TLC), the catalyst was separated by using a bar magnet, and the product was collected by filtration and washed with EtOH. Methyl 1-(2-Bromophenyl)-4-[(2-bromophenyl)amino]-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (4f)White solid; yield: 482 mg (82%); mp 165–166 °C. IR (KBr): 3330, 1686, 1635, 1446, 1298, 825 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.80 (s, 3 H), 4.48 (s, 2 H), 7.03 (t, J = 7.5 Hz, 1 H), 7.18 (t, J = 7.0 Hz, 1 H), 7.33–7.36 (m, 5 H), 7.49–7.51 (m, 1 H), 8.40 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 49.7, 51.5, 106.7, 124.3, 125.1, 126.4, 126.5, 127.8, 129.2, 129.6, 129.7, 130.6, 132.4, 135.0, 135.4, 142.6, 164.1, 165.0. HRMS (ESI): m/z [M + H]+ calcd for C18H14Br2N2O3: 464.9449; found: 464.9455. 48 Pyrrolidinones 6a–p and Bipyrrolidinones 8a–e; General ProcedureA mixture of the aromatic amine 3 (1 mmol for product 6; 2 mmol for product 8) and dialkyl acetylenedicarboxylate (1 mmol for product 6; 2 mmol for product 8) in MeOH (3 mL) was stirred at r.t. for 20 min. Amine 5 (1 mmol) or propane-1,3-diamine (7, 1 mmol), 37% aq HCHO (1.5 mmol for product 6; 3.0 mmol for product 8), and CoFe2O4@SiO2@IRMOF-3 (0.02 g) were added successively, and the mixture was stirred at r.t. for the appropriate time (Tables 3 and 4). When the reaction was complete (TLC), the catalyst was separated with a bar magnet, and the product was collected by filtration and washed with EtOH.Methyl 1-(4-Methoxyphenyl)-5-oxo-4-(phenylamino)-2,5-dihydro-1H-pyrrole-3-carboxylate (6a)White solid; yield: 273 mg (81%); mp 120–121 °C. IR (KBr): 3279, 1711, 1688, 1510, 1201, 823 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.74 (s, 3 H), 3.80 (s, 3 H), 4.49 (s, 2 H), 6.84–6.86 (m, 1 H), 6.91 (d, J = 9.0 Hz, 2 H), 7.09 (d, J = 8.5 Hz, 1 H), 7.13–7.15 (m, 1 H), 7.28–7.32 (m, 2 H), 7.64–7.67 (m, 2 H), 8.02 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 48.7, 51.3, 55.5, 100.8, 113.6, 114.3, 119.3, 121.1, 122.8, 124.6, 125.1, 128.3, 157.1, 163.5, 165.1. HRMS (ESI): m/z [M + H]+ calcd for C19H19N2O4: 339.1345; found: 339.1353.Methyl 1-(4-Bromophenyl)-4-(cyclopentylamino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (6m)White solid; yield: 336 mg (89%); mp 90–92 °C. IR (KBr): 3335, 1713, 1683, 1259, 844 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.45–1.50 (m, 2 H), 1.60–1.65 (m, 3 H), 1.71–1.75 (m, 2 H), 2.02–2.07 (m, 2 H), 3.78 (s, 3 H), 4.37 (s, 2 H), 5.03 (s, 1 H), 7.49-7.51 (m, 2 H), 7.67–7.69 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 23.7, 34.8, 47.8, 50.9, 54.1, 95.9, 117.7, 120.5, 128.8, 132.0, 137.9, 164.4, 165.5. HRMS (ESI): m/z [M + H]+ calcd for C17H20BrN2O3: 379.0657; found: 379.0661.Dimethyl 4,4'-[Propane-1,3-diylbis(azanediyl)]bis(5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-3-carboxylate) (8a)White solid; yield: 445 mg (89%); mp 104–105 °C. IR (KBr): 3314, 2950, 1706, 1686, 1499, 1259, 762 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.92–1.97 (m, 2 H), 3.78 (s, 6 H), 3.97–4.01 (m, 4 H), 4.39 (s, 4 H), 7.10 (t, J = 7.5 Hz, 2 H), 7.37 (t, J = 8.0 Hz, 4 H), 7.74 (d, J = 8.0 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 33.2, 40.3, 48.0, 51.0, 118.2, 119.4, 125.0, 129.1, 129.3, 138.8, 164.5, 165.5. HRMS (ESI): m/z [M + H]+ calcd for C27H29N4O6: 505.2087; found: 505.2093.Dimethyl 4,4'-[Propane-1,3-diylbis(azanediyl)]bis[5-oxo-1-(p-tolyl)-2,5-dihydro-1H-pyrrole-3-carboxylate] (8c)White solid; yield: 479 mg (90%); mp 135–136 °C. IR (KBr): 3401, 2951, 1659, 1636, 1455, 1258, 820 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.93–1.95 (m, 2 H), 2.34 (s, 6 H), 3.77 (s, 6 H), 3.97–4.01 (m, 4 H), 4.36 (s, 4 H), 7.17 (d, J = 8.5 Hz, 4 H), 7.60 (d, J = 8.5 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 20.9, 29.7, 40.0, 47.4, 51.0, 119.4, 129.6, 129.7, 132.4, 134.7, 136.3, 161.9, 164.3. HRMS (ESI): m/z [M + H]+ calcd for C29H33N4O6: 533.2400; found: 533.2406.4,4'-[Propane-1,3-diylbis(azanediyl)]bis[1-(4-bromophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate] (8e)Yellow solid; yield: 574 mg (87%); mp 168–170 °C. IR (KBr): 3324, 2941, 1703, 1687, 1645, 1430, 1290, 1200, 759 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.87–1.90 (m, 2 H), 3.73 (s, 6 H), 3.93-3.95 (m, 4 H), 4.28 (s, 4 H), 7.40–7.45 (m, 4 H), 7.59 (d, J = 9.0 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 33.0, 40.1, 47.8, 51.1, 117.7, 119.3, 119.6, 120.5, 132.0, 137.8, 164.5, 165.5. HRMS (ESI): m/z [M + H]+ calcd for C27H27Br2N4O6: 661.0297; found: 661.0292. Zusatzmaterial Zusatzmaterial Supporting Information