Synlett 2017; 28(06): 707-712
DOI: 10.1055/s-0036-1588923
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Thiocyclization for the Synthesis of Trifluoro­methylated Benzothiophenes by C–H Functionalization of Aryl Disulfides

Yan-Feng Lin
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: [email protected]
,
Chong Wang
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: [email protected]
,
Bo-Lun Hu
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: [email protected]
,
Peng-Cheng Qian
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: [email protected]
,
Xing-Guo Zhang*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 27 September 2016

Accepted after revision: 20 November 2016

Publication Date:
12 December 2016 (online)


Abstract

An iron-catalyzed thiocyclization of propynols with aryl disulfides has been developed for the synthesis of trifluoromethylated benzothiophenes. The one-pot tandem reaction involves Meyer–Schuster ­rearrangement of propynols and radical cyclization through C–H functionalization of aryl disulfides. A variety of 2-trifluoroacyl benzothiophenes were prepared in moderate to good yields with good functional-group tolerance.

Supporting Information

 
  • References

    • 1a Crenshaw RR, Jeffries AT, Luke GM, Cheney LC, Bialy G. J. Med. Chem. 1971; 14: 1185
    • 1b Jones CD, Jevnikar MG, Pike AJ, Peters MK, Black LJ, Thompson AR, Falcone JF, Clemens JA. J. Med. Chem. 1984; 27: 1057
    • 1c Qin Z, Kasrati I, Chandrasena RE. P, Liu H, Yao P, Petukhov PA, Bolton JL, Thatcher GR. J. J. Med. Chem. 2007; 50: 2682
    • 1d McGill KA, Busse WW. Lancet 1996; 348: 519
    • 1e Li L, Mathieu M.-C, Denis D, Therien AG, Wang Z. Bioorg. Med. Chem. Lett. 2011; 21: 734
    • 1f Wang S, Beck R, Blench T, Burd A, Buxton S, Malic M, Ayele T, Shaikh S, Chahwala S, Chander C, Holland R, Merette S, Zhao L, Blackney M, Watts A. J. Med. Chem. 2010; 53: 1465
    • 2a Um M.-C, Kwak J, Hong J.-P, Kang J, Yoon DY, Lee SH, Lee C, Hong J.-I. J. Mater. Chem. 2008; 18: 4698
    • 2b Gao P, Beckmann D, Tsao HN, Feng X, Enkelmann V, Pisula W, Müellen K. Chem. Commun. 2008; 39: 1548
    • 2c Chen S, Yang Y, Wu Y, Tian H, Zhu W. J. Mater. Chem. 2012; 22: 5486
    • 2d Barbarella G, Favaretto L, Zanelli A, Gigli G, Mazzeo M, Anni M, Bongini A. Adv. Funct. Mater. 2005; 15: 664
    • 2e Yin J, Zhou Y, Lei T, Pei J. Angew. Chem. Int. Ed. 2011; 50: 6320
    • 3a Nakamura I, Sato T, Yamamoto Y. Angew. Chem. Int. Ed. 2006; 45: 4473
    • 3b Gabriele B, Mancuso R, Lupinacci E, Veltri L, Salerno G, Carfagna C. J. Org. Chem. 2011; 76: 8277
    • 3c Sanz R, Guilarte V, Hernando E, Sanjuán AM. J. Org. Chem. 2010; 75: 7443
    • 3d Kunz T, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 1958
    • 3e Flynn BL, Verdier-Pinard P, Hamel E. Org. Lett. 2001; 3: 651
    • 4a Sun L.-L, Deng C.-L, Tang R.-Y, Zhang X.-G. J. Org. Chem. 2011; 76: 7546
    • 4b Guilarte V, Fernández-Rodríguez MA, Garíca-García P, Hernando E, Sanz R. Org. Lett. 2011; 13: 5100
    • 4c Yu H, Zhang M, Li Y. J. Org. Chem. 2013; 78: 8898
    • 4d Kashiki T, Shinamura S, Kohara M, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H. Org. Lett. 2009; 11: 2473
    • 5a Akiyama T, Kato K, Kajitani M, Sakaguchi Y, Nakamura J, Hayashi H, Sugimori A. Bull. Chem. Soc. Jpn. 1988; 61: 3531
    • 5b Matthews DP, Whitten JP, McCarthy JR. Tetrahedron Lett. 1986; 27: 4861
    • 5c Owton WM. Tetrahedron Lett. 2003; 44: 7147
    • 5d Arimori S, Shibata N. Org. Lett. 2015; 17: 1632
    • 5e Zheng J, Lin JH, Deng XY, Xiao JC. Org. Lett. 2015; 17: 532
    • 5f Zhang X.-G, Lin Y.-F, Zhang X.-H, Hu B.-L, Deng C.-L. CN 105503822, 2016
    • 6a Schlosser M. Angew. Chem. Int. Ed. 2005; 44: 214
    • 6b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 6c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 6d Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 6e Welch JT. Tetrahedron 1987; 43: 3123
    • 6f Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 7a Yoshida M, Yoshida T, Kobayashi M, Kamigata N. J. Chem. Soc., Perkin Trans. 1 1989; 909
    • 7b Sawada H, Nakayama M. J. Fluorine Chem. 1990; 46: 423
    • 7c Kino T, Nagase Y, Ohtsuka Y, Yamamoto K, Uraguchi D, Tokuhisa K, Yamakawa T. J. Fluorine Chem. 2010; 131: 98
    • 7d Iqbal N, Choi S, Ko E, Cho EJ. Tetrahedron Lett. 2012; 53: 2005
    • 8a Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
    • 8b Uneyama K, Katagiri T, Amii H. Acc. Chem. Res. 2008; 41: 817
    • 8c Konno T. Synlett 2014; 25: 1350

      For selected reviews, see:
    • 9a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 9b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 9c Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 9d Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 9e Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 9f Kuninobu Y, Takai K. Chem. Rev. 2011; 111: 1938
    • 9g Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 10a Nobushige K, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1188
    • 10b Ming Y, Xie Y, Xie C, Zhang Y. Org. Lett. 2012; 14: 2164
    • 10c Rajarshi S, Antonchick AP. Angew. Chem. Int. Ed. 2011; 50: 5217
    • 10d Wang B, Liu Y, Lin C, Xu Y, Liu Z, Zhang Y. Org. Lett. 2014; 16: 4574
    • 10e Wang B, Shen C, Yao J, Yin H, Zhang Y. Org. Lett. 2014; 16: 46
    • 11a Qing F.-L, Gao WZ, Ying J. J. Org. Chem. 2000; 65: 2003
    • 11b Yamazaki T, Watanabe Y, Yoshida N, Kawasaki-Takasuka T. Tetrahedron 2012; 68: 6665
    • 11c Konno T, Moriyasu K, Kinugawa R, Ishihara T. Org. Biomol. Chem. 2010; 8: 1718
    • 11d Yamazaki T, Yamamoto T, Ichihara R. J. Org. Chem. 2006; 71: 6251
    • 11e Li P, Liu Z.-J, Liu J.-T. Tetrahedron 2010; 66: 9729

      For selected examples, see:
    • 12a Presset M, Michelet B, Guillot R, Bour C, Bezzenine-Lafollee S, Gandon V. Chem. Commun. 2015; 51: 5318
    • 12b Hansmann MM, Hashmi AS. K, Lautens M. Org. Lett. 2013; 15: 3226
    • 12c Xiong Y.-P, Wu M.-Y, Zhang X.-Y, Ma C.-L, Huang L, Zhao L.-J, Tan B, Liu X.-Y. Org. Lett. 2014; 16: 1000
    • 12d Okamoto N, Sueda T, Yanada R. J. Org. Chem. 2014; 79: 9854
  • 13 CCDC 1482042 contains the supplementary crystallographic data for compound 10. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 14a Ye L, Zhang L. Org. Lett. 2009; 11: 3646
    • 14b Puri S, Thirupathi N, Reddy MS. Org. Lett. 2014; 16: 5246
    • 15a Yang Z.-J, Hu B.-L, Deng C.-L, Zhang X.-G. Adv. Synth. Catal. 2014; 356: 1962
    • 15b Zhang X.-S, Jiao J.-Y, Zhang X.-H, Hu B.-L, Zhang X.-G. J. Org. Chem. 2016; 81: 5710
    • 16a Liu J, Fan C, Yin H, Qin C, Zhang G, Zhang X, Yi H, Lei A. Chem. Commun. 2014; 50: 2145
    • 16b Sha W, Yu J.-T, Jiang Y, Yang H, Cheng J. Chem. Commun. 2014; 50: 9181
  • 17 General Procedure for the Synthesis of 2-Trifluoroacylbenzothiophenes To a flame-dried Schlenk tube with a magnetic stirring bar was charged with 1 (0.1 mmol), 2 (0.2 mmol), FeCl3 (6.4 mg, 0.04 mmol), BPO (0.02 mmol, 4.8 mg), and I2 (101.6 mg, 0.4 mmol) in MeNO2 (2 mL) under N2 atmosphere. The reaction mixture was stirred at 120 °C until complete consumption of starting material as detected by TLC or GC–MS analysis. After the reaction was finished, the mixture was poured into EtOAc, which was washed with sat. Na2S2O3 (2 × 15 mL) and brine (1 × 15 mL). After the aqueous layer was extracted with EtOAc, the combined organic layers were dried over anhydrous Na2SO4, and evaporated under vacuum. The residue was purified by flash column chromatography (PE–EtOAc) to afford the desired products 320. 2,2,2-Trifluoro-1-(3-phenylbenzo[b]thiophen-2-yl)ethanone (3) Yellow solid (52.0 mg, 85% yield); mp 65–68 °C. 1H NMR (500 MHz, CDCl3): δ = 7.84 (d, J = 8.0 Hz, 1 H), 7.51–7.47 (m, 2 H), 7.43–7.40 (m, 3 H), 7.33–7.32 (m, 1 H), 7.29–7.27 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 175.6 (q, J C–F = 37.1 Hz), 148.6, 141.9, 139.6, 133.8, 129.5, 129.0, 128.7, 128.4, 127.9, 126.4, 125.6, 122.5, 116.0 (q, J C–F = 289.0 Hz). 19F NMR (470 MHz, CDCl3): δ = –73.10 (s, 3 F). LRMS (EI, 70 eV): m/z (%) = 306 (57) [M+], 237 (100), 165 (48), 163 (12), 104 (17). ESI-HRMS: m/z calcd for C16H9F3NaOS+ [M + Na]+: 329.0218; found: 329.0223.