Synlett, Inhaltsverzeichnis Synlett 2016; 27(20): 2836-2840DOI: 10.1055/s-0036-1588883 letter © Georg Thieme Verlag Stuttgart · New York The Preparation and Reactivity of 2-Bromo-3-(tri-n-butylstannyl)-1-propene David R. Williams* , Akshay A. Shah , Dawn A. Brooks , Nicolas Zorn Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract The preparation of 2-bromo-3-(tri-n-butylstannyl)-1-propene is described. This study characterizes the reactivity of 2-bromo-3-(tri-n-butylstannyl)-1-propene in SE′ reactions with aldehydes and includes a survey of radical reactions of 2-bromo-3-(tri-n-butylstannyl)-1-propene with α-bromocarbonyl compounds for C-alkylation. Key words Key wordsorganostannane preparation - bifunctional reagent - SE′ reactions - radical reaction - alkenyl bromides Volltext Referenzen References and Notes 1 New address: A. A. Shah, Pfizer, Groton, CT, 06340, USA. 2 New address: D. A. Brooks, Eli Lilly & Company, Indianapolis, IN 46285, USA. 3 New address: N. Zorn, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland. 4a For an example of sequential SE′ reactions, see: Williams DR, Claeboe CD, Liang B, Zorn N, Chow NS. C. Org. Lett. 2012; 14: 3866 4b For an example of sequential cross coupling–carbocyclization reactions, see: Williams DR, Shah AA, Mazumder S, Baik M.-H. Chem. Sci. 2013; 4: 238 Two illustrative examples of total syntheses are cited: 5a Piers E, Gilbert M, Cook KL. Org. Lett. 2000; 2: 1407 5b Martin DB. C, Vanderwal CD. J. Am. Chem. Soc. 2009; 131: 3472 6 Williams DR, Meyer KG. J. Am. Chem. Soc. 2001; 123: 765 For related reagents described from our laboratory, see: 7a Williams DR, Fultz MW. J. Am. Chem. Soc. 2005; 127: 14550 7b Williams DR, Morales-Ramos ÁI, Williams CM. Org. Lett. 2006; 8: 4393 For a representative sampling of reports, featuring bifunctional allyl synthons, see: 8a Ferris GE, Hong K, Roundtree IA, Morken JP. J. Am. Chem. Soc. 2013; 135: 2501 8b Sieber JD, Morken JP. J. Am. Chem. Soc. 2006; 128: 74 8c Chen M, Roush WR. J. Am. Chem. Soc. 2013; 135: 9512 8d Peng F, Hall DG. J. Am. Chem. Soc. 2007; 129: 3070 8e Macé A, Tripoteau F, Zhao Q, Gayon E, Vrancken E, Campagne J.-M, Carboni B. Org. Lett. 2013; 15: 906 8f Fernández E, Pietruszka J, Frey W. J. Org. Chem. 2010; 75: 5580 8g González AZ, Román JG, Alicea E, Canales E, Soderquist JA. J. Am. Chem. Soc. 2009; 131: 1269 8h Binanzer M, Fang GY, Aggarwal VK. Angew. Chem. Int. Ed. 2010; 49: 4264 8i Nishiyama H, Narimatsu S, Itoh K. Tetrahedron Lett. 1981; 22: 5289 9a Corey EJ, Yu C.-M, Kim S.-S. J. Am. Chem. Soc. 1989; 111: 5495 9b Corey EJ, Kim S.-S. Tetrahedron Lett. 1990; 31: 3715 10a Barbero A, Cuadrado P, Fleming I, González AM, Pulido FJ. Chem. Commun. 1990; 1030 10b Barbero A, Cuadrado P, Fleming I, González AM, Pulido FJ. J. Chem. Soc., Perkin Trans. 1 1992; 327 10c The data for the product 2-bromo-3-(tributylstannyl)prop-1-ene is given as follows: 1H NMR (400 MHz, CDCl3): δ = 5.6 (1 H, m), 5.35 (1 H, m), 2.25 (2 H, s), 1.70–0.70 (27 H, m). The reported data of their product differs substantially with respect to the key vinylic and allylic hydrogen assignments of Figure 1. 11a Williams DR, Brooks DA, Meyer KG, Clark MP. Tetrahedron Lett. 1998; 39: 7251 11b Williams DR, Meyer KG, Shamim K, Patnaik S. Can. J. Chem. 2004; 82: 120 For examples, see: 12a Williams DR, Kiryanov AA, Emde U, Clark MP, Berliner MA, Reeves JT. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12058 12b Williams DR, Plummer SV, Patnaik S. Org. Lett. 2003; 5: 5035 12c Williams DR, Brooks DA, Berliner MA. J. Am. Chem. Soc. 1999; 121: 4924 13a Williams DR, Walsh MJ, Claeboe CD, Zorn N. Pure Appl. Chem. 2009; 81: 181 13b Williams DR, Atwater BA, Bawel SA, Ke P, Gutierrez O, Tantillo DJ. Org. Lett. 2014; 16: 468 14 For a discussion in total synthesis: Williams DR, Plummer SV, Patnaik S. Tetrahedron 2011; 67: 5083 15 For preparation of the corresponding 2-chloro-3-(tri-n-butylstannyl)-1-propene: Baldwin JE, Adlington RM, Lowe C, O’Neil IA, Sanders GL, Schofield CJ, Sweeney JB. Chem. Commun. 1988; 1030 16 Still WC. J. Am. Chem. Soc. 1978; 100: 1481 17 The allylic alcohol 2-bromo-1-propen-3-ol (10.6 g, 64.3 mmol) was dissolved in CH2Cl2 at 0 °C, and Et3N (10.3 mL, 73.9 mmol) was added under inert atmosphere. After stirring for 5 min, methanesulfonyl chloride (5.72 mL, 73.9 mL) was added dropwise at 0 °C. The reaction mixture was allowed to warm to 22 °C with continued stirring over 2 h. TLC (20% EtOAc in hexanes) shows the production of a less polar mesylate and the disappearance of starting alcohol. The reaction mixture was concentrated under reduced pressure to approximately one-third of its volume, and the concentrate was diluted with Et2O (150 mL). The mixture was filtered through a pad of Celite® to remove the triethylammonium hydrochloride precipitate with the aid of additional quantities of Et2O. The filtrate was concentrated in vacuo to give the crude mesylate as a yellow oil with yields consistently in the 85–90% range. Vacuum distillation (1.4 mm Hg pressure) by Kugelrohr bulb-to-bulb transfer at an oven temperature of 60 °C afforded product as a colorless liquid which was judged to be >97% pure based on the 1H NMR and 13C NMR spectra of these samples. 1H NMR (400 MHz, CDCl3): δ = 6.08 (1 H), 5.78 (1 H), 4.81 (2 H), 3.09 (3 H). 13C NMR (400 MHz, CDCl3): δ = 124.1, 121.7, 72.3, 38.5). HRMS (CI): m/z calcd for C4H8BrO3S [M + H]+ 214.9372; found: 214.9372. This mesylate was directly utilized in the next step. 18 Darwish A, Chong JM. Synth. Commun. 2004; 34: 1885 Zusatzmaterial Zusatzmaterial Supporting Information