Synthesis 2016; 48(24): 4400-4422
DOI: 10.1055/s-0036-1588877
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in the Chemistry of Vinylsiloxanes

Kiran Indukuri
Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium   Email: [email protected]
,
Loïc Cornelissen
Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium   Email: [email protected]
,
Olivier Riant*
Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 22 July 2016

Accepted: 26 July 2016

Publication Date:
15 September 2016 (online)


Abstract

Vinylsiloxanes are vital systems in modern organic chemistry and are widely utilized as vinylic precursors in cross-coupling reactions. The ease of regio- and stereoselective synthesis of vinylsiloxanes led to the rapid development of highly selective vinyl analogues in organic synthesis. This review describes different routes for the synthesis of vinylsiloxanes and highlights their recent developments in various metal-catalyzed cross-coupling reactions for the formation of new carbon–carbon and carbon–heteroatom bonds. It also covers some applications of vinylsiloxanes in natural product synthesis and in carbon–oxygen bond formation via Tamao–Fleming oxidation. The mechanisms of the selected reactions are discussed alongside.

1 Introduction

2 Synthesis of Vinylsiloxanes

3 Reactions of Vinylsiloxanes

3.1 Palladium-Catalyzed Reactions

3.2 Copper-Catalyzed Reactions

3.3 Ir-, Ru-, Co-, and Ni-Catalyzed Reactions

3.4 Vinylation of Carbonyl Compounds

3.5 Conjugate Addition to α,β-Unsaturated Carbonyl Compounds

3.6 Cycloaddition Reactions

3.7 Radical Reactions

3.8 Tamao–Fleming Oxidation of Vinylsiloxanes

3.9 Miscellaneous Reactions

4 Summary and Conclusions

 
  • References

  • 1 Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 2a Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
    • 2b Denmark SE, Liu JH. C. Angew. Chem. Int. Ed. 2010; 49: 2978
    • 2c Sore HF, Galloway WR. J. D, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
    • 2d Jones GR, Landais Y. Tetrahedron 1996; 52: 7599
  • 3 Lim DS. W, Anderson EA. Synthesis 2012; 44: 983
    • 4a Trost BM, Ball ZT. Synthesis 2005; 853
    • 4b Benkeser RA, Burrous ML, Nelson LE, Swisher JV. J. Am. Chem. Soc. 1961; 83: 4385
    • 4c Lewis LN, Sy KG, Bryant GL, Donahue PE. Organometallics 1991; 10: 3750
    • 4d Takeuchi R, Nitta S, Watanabe D. J. Org. Chem. 1995; 60: 3045
    • 5a Park S, Kim M, Lee D. J. Am. Chem. Soc. 2005; 127: 9410
    • 5b Wang Y, Jimenez M, Hansen AS, Raiber E.-A, Schreiber SL, Young DW. J. Am. Chem. Soc. 2011; 133: 9196
    • 5c Park S, Lee D. J. Am. Chem. Soc. 2006; 128: 10664
    • 5d Miller RL, Maifeld SV, Lee D. Org. Lett. 2004; 6: 2773
    • 5e Lee Y.-J, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 10652
  • 6 Martin SE. S, Watson DA. J. Am. Chem. Soc. 2013; 135: 13330
  • 7 Cano R, Yus M, Ramón DJ. ACS Catal. 2012; 2: 1070
  • 8 Alonso F, Buitrago R, Moglie Y, Sepúlveda-Escribano A, Yus M. Organometallics 2012; 31: 2336
  • 9 Psyllaki A, Lykakis IN, Stratakis M. Tetrahedron 2012; 68: 8724
  • 10 Kidonakis M, Stratakis M. Org. Lett. 2015; 17: 4538
  • 11 Miller ZD, Montgomery J. Org. Lett. 2014; 16: 5486
  • 12 Sumida Y, Kato T, Yoshida S, Hosoya T. Org. Lett. 2012; 14: 1552
  • 13 Ding S, Song L.-J, Wang Y, Zhang X, Chung LW, Wu Y.-D, Sun J. Angew. Chem. Int. Ed. 2015; 54: 5632
    • 14a Lambert JB, Chelius EC. J. Am. Chem. Soc. 1990; 112: 8120
    • 14b Lambert JB, Zhao Y. J. Am. Chem. Soc. 1996; 118: 7867
  • 15 Tamao K, Kobayashi K, Ito Y. Tetrahedron Lett. 1989; 30: 6051
  • 16 Clarke ML. Adv. Synth. Catal. 2005; 347: 303
    • 17a Alacida E, Nájera C. Adv. Synth. Catal. 2006; 348: 2085
    • 17b Alacida E, Nájera C. J. Org. Chem. 2008; 73: 2315
  • 18 Lee D.-H, Jung J.-Y, Jin M.-J. Chem. Commun. 2010; 46: 9046
  • 19 Mowery ME, DeShong P. J. Org. Chem. 1999; 64: 1684
  • 20 Horino Y, Luzung MR, Toste FD. J. Am. Chem. Soc. 2006; 128: 11364
  • 21 Denmark SE, Yang S.-M. Org. Lett. 2001; 3: 1749
    • 22a Denmark SE, Yang S.-M. J. Am. Chem. Soc. 2002; 124: 2102
    • 22b Denmark SE, Muhuhi JM. J. Am. Chem. Soc. 2010; 132: 11768
  • 23 Denmark SE, Yang S.-M. J. Am. Chem. Soc. 2002; 124: 15196
  • 24 Dey R, Chattopadhyay K, Ranu BC. J. Org. Chem. 2008; 73: 9461
    • 25a Sengupta S, Bhattacharyya S, Sadhukhan SK. J. Chem. Soc., Perkin Trans. 1 1998; 275
    • 25b Sengupta S, Sadhukhan SK. Org. Synth. 2002; 79: 52
    • 25c Sharrett Z, Villalpando A, Fronczek FR, Isovitsch R. J. Mol. Struct. 2011; 1005: 167
    • 26a Nasim M, Petrosyan VS, Zaitseva GS. J. Organomet. Chem. 1992; 430: 269
    • 26b Berthon-Gelloz G, Marchant M, Straub BF, Marko IE. Chem. Eur. J. 2009; 15: 2923
  • 27 Luo F, Pan C, Qian P, Cheng J. Synthesis 2010; 2005
  • 28 Luo F, Pan C, Qian P, Cheng J. J. Org. Chem. 2010; 75: 5379
  • 29 Cornelissen L, Vercruysse S, Sanhadji A, Riant O. Eur. J. Org. Chem. 2014; 35
  • 30 Cornelissen L, Lefrancq M, Riant O. Org. Lett. 2014; 16: 3024
  • 31 Cornelissen L, Cirriez V, Vercruysse S, Riant O. Chem. Commun. 2014; 50: 8018
  • 32 Wang X, Xue L, Wang Z. Org. Lett. 2014; 16: 4056
  • 33 Trost BM, Ball ZT, Jöge T. J. Am. Chem. Soc. 2002; 124: 7922
  • 34 Koike T, Du X, Sanada T, Danda Y, Mori A. Angew. Chem. Int. Ed. 2003; 42: 89
    • 35a Kachiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M. Bull. Chem. Soc. Jpn. 1995; 68: 62
    • 35b Martinez R, Simon M.-O, Chevalier R, Pautigny C, Genet J.-P, Darses S. J. Am. Chem. Soc. 2009; 131: 7887
    • 35c Wagner D, Bräse S. Beilstein J. Org. Chem. 2015; 11: 431
    • 35d Martinez R, Chevalier R, Darses S, Genet J.-P. Angew. Chem. Int. Ed. 2006; 45: 8232
    • 35e Simon M.-O, Martinez R, Genet J.-P, Darses S. J. Org. Chem. 2010; 75: 208
    • 35f Kakiuchi F, Sato T, Tsujimoto T, Yamauchi M, Chatani N, Murai S. Chem. Lett. 1998; 1053
    • 35g Simon M.-O, Genet J.-P, Darses S. Org. Lett. 2010; 12: 3038
    • 35h Kakiuchi F, Murai S. Russ. J. Org. Chem. 1996; 32: 241
    • 35i Sonoda M, Kakiuchi F, Chatani N, Murai S. Bull. Chem. Soc. Jpn. 1997; 70: 3117
    • 35j Bartoszewicz A, Martín-Matute B. Org. Lett. 2009; 11: 1749
    • 35k Harris PW. R, Woodgate PD. Tetrahedron 2000; 56: 4001
  • 36 Marciniec B, Kostera S, Wyrzykiewicza B, Pawluć P. Dalton Trans. 2015; 44: 782
  • 37 Someya H, Kondoh A, Sato A, Ohmiya H, Yorimitsu H, Oshima K. Synlett 2006; 3061
  • 38 Hachiya H, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2010; 49: 2202
  • 39 Dai X, Strotman NA, Fu GC. J. Am. Chem. Soc. 2008; 130: 3302
    • 40a Aikawa K, Hioki Y, Mikami K. J. Am. Chem. Soc. 2009; 131: 13922
    • 40b Miura K, Inoue G, Sasagawa H, Kinoshita H, Ichikawa J, Hosomi A. Org. Lett. 2009; 11: 5066
    • 40c Kinoshita H, Uemura R, Fukuda D, Miura K. Org. Lett. 2013; 15: 5538
    • 41a Tomita D, Wada R, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 4138
    • 41b Motoki R, Tomita D, Kanai M, Shibasaki M. Tetrahedron Lett. 2006; 47: 8083
  • 42 Tomita D, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 6946
  • 43 Aikawa K, Hioki Y, Mikami K. J. Am. Chem. Soc. 2009; 131: 13922
  • 44 Oi S, Honma Y, Inoue Y. Org. Lett. 2002; 4: 667
  • 45 Oi S, Taira A, Honma Y, Inoue Y. Org. Lett. 2003; 5: 97
  • 46 Otomaru Y, Hayashi T. Tetrahedron: Asymmetry 2004; 15: 2647
    • 47a Stork G, Chan TY, Breault GA. J. Am. Chem. Soc. 1992; 114: 7578
    • 47b Robertson J, Middleton DS, O’Connor G, Sardharwala T. Tetrahedron Lett. 1998; 39: 669
  • 48 Sieburth SM, Lang J. J. Org. Chem. 1999; 64: 1780
  • 49 Trost BM, Ball ZT. J. Am. Chem. Soc. 2005; 127: 17644
  • 50 Shvartsbart A, Smith III AB. J. Am. Chem. Soc. 2014; 136: 870
  • 51 Kudoh T, Ishikawa T, Shimizu Y, Saito S. Org. Lett. 2003; 5: 3875
  • 52 Denmark SE, Cottell JJ. J. Org. Chem. 2001; 66: 4276
  • 53 Yahiro Y, Ichikawa S, Shuto S, Matsuda A. Tetrahedron Lett. 1999; 40: 5527
  • 54 Friestad GK, Massari SE. Org. Lett. 2000; 2: 4237
    • 55a Tamao K, Kakui T, Akita M, Iwahara T, Kanatani R, Yoshida J, Kumada M. Tetrahedron 1983; 39: 983
    • 55b Fleming I, Henning R, Plaut H. J. Chem. Soc., Chem. Commun. 1984; 29
    • 55c Tamao K, Ishida N, Tanaka T, Kumada M. Organometallics 1983; 2: 1694
    • 55d Fleming I, Hill JH. M, Parker D, Waterson D. J. Chem. Soc., Chem. Commun. 1985; 318
  • 56 Tamao K, Kumada M, Maeda K. Tetrahedron Lett. 1984; 25: 321
  • 57 Chang S, Grubbs RH. Tetrahedron Lett. 1997; 38: 4757
  • 58 Marshall JA, Yanik MM. Org. Lett. 2000; 2: 2173
  • 59 Marshall JA, Yanik MM. J. Org. Chem. 2001; 66: 1373
  • 60 Marshall JA, Ellis KC. Org. Lett. 2003; 5: 1729
  • 61 Burova SA, McDonald FE. J. Am. Chem. Soc. 2004; 126: 2495
  • 62 Trost BM, Ball ZT, Laemmerhold KM. J. Am. Chem. Soc. 2005; 127: 10028
  • 63 Bonafoux D, Ojima I. Org. Lett. 2001; 3: 2333
  • 64 Bunlaksananusorn T, Rodriguez AL, Knochel P. Chem. Commun. 2001; 745
    • 65a Bunlaksananusorn T, Knochel P. Tetrahedron Lett. 2002; 43: 5817
    • 65b Kröcher O, Köppel RA, Fröba M, Bailer A. J. Catal. 1998; 178: 284
    • 66a Ahmed M, Barrett AG. M, Beall JC, Braddock DC, Flack K, Gibson VC, Procopiou PA, Salter MM. Tetrahedron 1999; 55: 3219
    • 66b Barrett AG. M, Beall JC, Braddock DC, Flack K, Gibson VC, Salter MM. J. Org. Chem. 2000; 65: 6508
  • 67 Rodríguez-Escrich C, Urpí F, Vilarrasa J. Org. Lett. 2008; 10: 5191
    • 68a Grimm JB, Lee D. J. Org. Chem. 2004; 69: 8967
    • 68b Grimm JB, Otte RD, Lee D. J. Organomet. Chem. 2005; 690: 5508
    • 68c Mukherjee S, Lee D. Org. Lett. 2009; 11: 2916
    • 68d Keaton KA, Phillips AJ. J. Am. Chem. Soc. 2006; 128: 408