Synthesis 2017; 49(15): 3311-3322
DOI: 10.1055/s-0036-1588873
short review
© Georg Thieme Verlag Stuttgart · New York

Electron Transfer Reactions in Atom Transfer Radical Polymerization

a   Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA   Email: mfantin@andrew.cmu.edu   Email: km3b@andrew.cmu.edu
,
Francesca Lorandi
b   Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
,
Armando Gennaro
b   Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
,
Abdirisak A. Isse
b   Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
,
Krzysztof Matyjaszewski*
a   Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA   Email: mfantin@andrew.cmu.edu   Email: km3b@andrew.cmu.edu
› Author Affiliations
K.M. acknowledges support from NSF (CHE 1400052).
Further Information

Publication History

Received: 12 May 2017

Accepted: 15 May 2017

Publication Date:
04 July 2017 (online)


This paper is dedicated to the 70th birthday of Professor Herbert Mayr, who pioneered kinetic and thermodynamic measurements of reactions between electrophiles and nucleophiles that were extremely helpful for understanding carbocationic polymerization and also inspired the authors’ approach to atom transfer radical polymerization, especially eATRP.

Abstract

Electrochemistry may seem an outsider to the field of polymer science and controlled radical polymerization. Nevertheless, several electrochemical methods have been used to determine the mechanism of atom transfer radical polymerization (ATRP), using both a thermodynamic and a kinetic approach. Indeed, electron transfer reactions involving the metal catalyst, initiator/dormant species, and propagating radicals play a crucial role in ATRP. In this mini-review, electrochemical properties of ATRP catalysts and initiators are discussed, together with the mechanism of the atom and electron transfer in ATRP.

1 Introduction

2 Thermodynamic and Electrochemical Properties of ATRP Catalysts

3 Thermodynamic and Electrochemical Properties of Alkyl Halides and Alkyl Radicals

4 Atom Transfer from an Electrochemical and Thermodynamic Standpoint

5 Mechanism of Electron Transfer in ATRP

6 Electroanalytical Techniques for the Kinetics of ATRP Activation

7 Electrochemically Mediated ATRP

8 Conclusions

 
  • References

    • 1a Matyjaszewski K. Tsarevsky NV. J. Am. Chem. Soc. 2014; 136: 6513
    • 1b Matyjaszewski K. Xia J. Chem. Rev. 2001; 101: 2921
    • 1c Matyjaszewski K. Macromolecules 2012; 45: 4015
  • 3 Curran DP. Comprehensive Organic Synthesis . Pergamon; New York: 1992
  • 4 Jakubowski W. Matyjaszewski K. Angew. Chem. Int. Ed. 2006; 45: 4482
  • 5 Matyjaszewski K. Jakubowski W. Min K. Tang W. Huang J. Braunecker WA. Tsarevsky NV. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 15309
  • 6 Chmielarz P. Fantin M. Park S. Isse AA. Gennaro A. Magenau AJ. D. Sobkowiak A. Matyjaszewski K. Prog. Polym. Sci. 2017; 69: 47
  • 7 Konkolewicz D. Schröder K. Buback J. Bernhard S. Matyjaszewski K. ACS Macro Lett. 2012; 1: 1219
    • 8a Mohapatra H. Kleiman M. Esser-Kahn AP. Nat. Chem. 2017; 9: 135
    • 8b Wang Z. Pan X. Yan J. Dadashi-Silab S. Xie G. Zhang J. Wang Z. Xia H. Matyjaszewski K. ACS Macro Lett. 2017; 6: 546
    • 9a Treat NJ. Sprafke H. Kramer JW. Clark PG. Barton BE. Read de Alaniz J. Fors BP. Hawker CJ. J. Am. Chem. Soc. 2014; 136: 16096
    • 9b Pan X. Fang C. Fantin M. Malhotra N. So WY. Peteanu LA. Isse AA. Gennaro A. Liu P. Matyjaszewski K. J. Am. Chem. Soc. 2016; 138: 2411
    • 9c Theriot JC. Lim C.-H. Yang H. Ryan MD. Musgrave CB. Miyake GM. Science (Washington, D. C.) 2016; 352: 1082
  • 10 Bortolamei N. Isse AA. Di Marco VB. Gennaro A. Matyjaszewski K. Macromolecules 2010; 43: 9257
    • 11a Pintauer T. Matyjaszewski K. Coord. Chem. Rev. 2005; 249: 1155
    • 11b Eckenhoff WT. Garrity ST. Pintauer T. Eur. J. Inorg. Chem. 2008; 563
  • 12 Lorandi F. De Bon F. Fantin M. Isse AA. Gennaro A. Electrochem. Commun. 2017; 77: 116
  • 13 Lorandi F. Fantin M. Isse AA. Gennaro A. Polymer 2015; 72: 238
  • 14 Fantin M. Isse AA. Gennaro A. Matyjaszewski K. Macromolecules 2015; 48: 6862
  • 15 Fantin M. Isse AA. Venzo A. Gennaro A. Matyjaszewski K. J. Am. Chem. Soc. 2016; 138: 7216
  • 16 Konkolewicz D. Krys P. Góis JR. Mendonça PV. Zhong M. Wang Y. Gennaro A. Isse AA. Fantin M. Matyjaszewski K. Macromolecules 2014; 47: 560
  • 17 Konkolewicz D. Wang Y. Zhong M. Krys P. Isse AA. Gennaro A. Matyjaszewski K. Macromolecules 2013; 46: 8749
  • 18 Lanzalaco S. Fantin M. Scialdone O. Galia A. Isse AA. Gennaro A. Matyjaszewski K. Macromolecules 2017; 50: 192
  • 19 Kwak Y. Matyjaszewski K. Macromolecules 2008; 41: 6627
  • 20 Bortolamei N. Isse AA. Magenau AJ. D. Gennaro A. Matyjaszewski K. Angew. Chem. Int. Ed. 2011; 50: 11391
  • 21 Tang W. Kwak Y. Braunecker W. Tsarevsky NV. Coote ML. Matyjaszewski K. J. Am. Chem. Soc. 2008; 130: 10702
  • 22 Lanzalaco S. Galia A. Lazzano F. Mauro RR. Scialdone O. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 2524
    • 23a Fantin M. Park S. Wang Y. Matyjaszewski K. Macromolecules 2016; 49: 8838
    • 23b Fantin M. Isse AA. Matyjaszewski K. Gennaro A. Macromolecules 2017; 50: 2696
  • 24 Teo VL. Davis BJ. Tsarevsky NV. Zetterlund PB. Macromolecules 2014; 47: 6230
  • 25 Fantin M. Chmielarz P. Wang Y. Lorandi F. Isse AA. Gennaro A. Matyjaszewski K. Macromolecules 2017; 50: 3726
  • 26 Golub G. Lashaz A. Cohen H. Paoletti P. Andrea B. Valtancoli B. Meyerstein D. Inorg. Chim. Acta 1997; 255: 111
  • 27 Bell CA. Bernhardt PV. Monteiro MJ. J. Am. Chem. Soc. 2011; 133: 11944
  • 28 De Paoli P. Isse AA. Bortolamei N. Gennaro A. Chem. Commun. 2011; 47: 3580
  • 29 Isse AA. Bortolamei N. De Paoli P. Gennaro A. Electrochim. Acta 2013; 110: 655
  • 30 Isse AA. Lin CY. Coote ML. Gennaro A. J. Phys. Chem. B 2011; 115: 678
  • 31 Savéant J.-M. Adv. Phys. Org. Chem. 2000; 35: 117
  • 32 Lin CY. Coote ML. Gennaro A. Matyjaszewski K. J. Am. Chem. Soc. 2008; 130: 12762
    • 33a Verevkin SP. Krasnykh EL. Wright JS. Phys. Chem. Chem. Phys. 2003; 5: 2605
    • 33b Lin CY. Marque SR. A. Matyjaszewski K. Coote ML. Macromolecules 2011; 44: 7568
    • 33c Haynes WM. CRC Handbook of Chemistry and Physics . 95th ed. CRC Press; Boca Raton: 2014
  • 34 Tang W. Matyjaszewski K. Macromolecules 2007; 40: 1858
  • 35 Bortolamei N. Isse AA. Gennaro A. Electrochim. Acta 2010; 55: 8312
  • 36 Kaur A. Ribelli TG. Schröder K. Matyjaszewski K. Pintauer T. Inorg. Chem. 2015; 54: 1474
  • 37 Braunecker WA. Tsarevsky NV. Gennaro A. Matyjaszewski K. Macromolecules 2009; 42: 6348
    • 38a Qiu J. Matyjaszewski K. Thouin L. Amatore C. Macromol. Chem. Phys. 2000; 201: 1625
    • 38b Fantin M. Isse AA. Bortolamei N. Matyjaszewski K. Gennaro A. Electrochim. Acta 2016; 222: 393
  • 39 Isse AA. Gennaro A. Lin CY. Hodgson JL. Coote ML. Guliashvili T. J. Am. Chem. Soc. 2011; 133: 6254
  • 40 Augustine KF. Ribelli TG. Fantin M. Krys P. Cong Y. Matyjaszewski K. J. Polym. Sci., Part A: Polym. Chem. 2017; DOI: in press; 10.1002/pola.28585.
    • 41a Isse AA. Mussini PR. Gennaro A. J. Phys. Chem. C 2009; 113: 14983
    • 41b Durante C. Isse AA. Todesco F. Gennaro A. J. Electrochem. Soc. 2013; 160: G3073
  • 42 Bard AJ. J. Am. Chem. Soc. 2010; 132: 7559
  • 43 Ribelli TG. Krys P. Cong Y. Matyjaszewski K. Macromolecules 2015; 48: 8428
  • 44 Pan X. Lamson M. Yan J. Matyjaszewski K. ACS Macro Lett. 2015; 4: 192
  • 45 Fors BP. Hawker CJ. Angew. Chem. Int. Ed. 2012; 51: 8850
  • 46 Jockusch S. Yagci Y. Polym. Chem. 2016; 7: 6039
  • 47 Zerk TJ. Bernhardt PV. Inorg. Chem. 2014; 53: 11351
  • 48 Fantin M. Lorandi F. Isse AA. Gennaro A. Macromol. Rapid Commun. 2016; 37: 1318
  • 49 Lorandi F. Fantin M. Isse AA. Gennaro A. Polym. Chem. 2016; 7: 5357
  • 50 Mastan E. Zhu S. Macromolecules 2015; 48: 6440
  • 51 Magenau AJ. D. Bortolamei N. Frick E. Park S. Gennaro A. Matyjaszewski K. Macromolecules 2013; 46: 4346
    • 52a Mayr H. Bug T. Gotta MF. Hering N. Irrgang B. Janker B. Kempf B. Loos R. Ofial AR. Remennikov G. Schimmel H. J. Am. Chem. Soc. 2001; 123: 9500
    • 52b Mayr H. Ofial AR. Pure Appl. Chem. 2005; 77: 1807