Synthesis 2017; 49(16): 3535-3545
DOI: 10.1055/s-0036-1588868
short review
© Georg Thieme Verlag Stuttgart · New York

Strategies for the Synthesis of N-Arylammonium Salts

Shlomy Arava
Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Technion City, Haifa, 3200008, Israel   Email: [email protected]
,
Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Technion City, Haifa, 3200008, Israel   Email: [email protected]
› Author Affiliations
The authors thank Israel’s Ministry of National Infrastructure, Energy and Water Resources (grant number 216-11-048) for funding.
Further Information

Publication History

Received: 09 April 2017

Accepted after revision: 11 May 2017

Publication Date:
26 June 2017 (online)


Abstract

The N-arylation of tertiary amines to provide sp3 quaternary ammonium salts is a challenge in organic chemistry. To date, no general method for such arylations has been established. Here, we summarize a variety of strategies that have been tested, starting with harsh nucleophilic aromatic substitutions, through to the use of copper catalysis and the application of strong electrophiles, such as phenyl cations and benzynes. The achievements and limitations of each method are summarized, and the challenges yet to be met in the synthesis of charged ammonium compounds are described.

1 Introduction

2 Alkylation of Anilines: The Menshutkin Reaction

3 Arylations

3.1 Nucleophilic Aromatic Substitutions by Tertiary Amines

3.2 Preparation of N-Arylpyridinum Salts from Zincke and Pyrylium Salts

3.3 Arylations Using Phenyl Cations

3.4 Copper-Catalyzed Arylation of N-Heteroarenes

3.5 Benzynes as Aryl Electrophiles

4 Conclusions and Perspective

 
  • References

  • 1 Muñoz-Bonilla A. Fernández-Garcia M. Prog. Polym. Sci. 2012; 37: 281
  • 2 Jennings MC. Minbiole KP. C. Wuest WM. ACS Infect. Dis. 2015; 1: 288
  • 3 Branzoi V. Branzoi F. Baibarac M. Mater. Chem. Phys. 2000; 65: 288
  • 4 Fuchs-Godec R. Colloids Surf., A 2006; 280: 130
  • 5 Hong JW. Kim HK. Yu JA. Kim YB. J. Appl. Polym. Sci. 2002; 84: 132
  • 6 Kuang M. Shiyi Z. Lei J. Li Q. J. Appl. Polym. Sci. 2008; 109: 3887
  • 7 Corey EJ. Xu F. Noe MC. J. Am. Chem. Soc. 1997; 119: 12414
  • 8 Varcoe JR. Slade RC. T. Fuel Cells 2005; 5: 187
  • 9 Varcoe JR. Atanassov P. Dekel DR. Herring AM. Hickner MA. Kohl PA. Kucernak AR. Mustain WE. Nijmeijer K. Scott K. Xu T. Zhuang L. Energy Environ. Sci. 2014; 7: 3135
  • 10 Liang G. Encell L. Nelson MG. Switzer C. Shuker DE. G. Gold B. J. Am. Chem. Soc. 1995; 117: 10135
  • 11 Leboeuf M. Cave A. Ranaivo A. Can. J. Chem. 1989; 67: 947
  • 12 Jiménez C. Crews P. Tetrahedron 1991; 47: 2097
  • 13 Rochfort SJ. Towerzey L. Carroll A. King G. Michael A. Pierens G. Rali T. Redburn J. Whitmore J. Quinn RJ. J. Nat. Prod. 2005; 68: 1080
  • 14 Martin F. Grkovic T. Sykes ML. Shelper T. Avery VM. Camp D. Quinn RJ. Davis RA. J. Nat. Prod. 2011; 74: 2425
  • 15 Gerszberg S. Gaona RT. Lopez H. Cornin J. Tetrahedron Lett. 1973; 1269
  • 16 Hilhorst E. Chen TB. R. A. Iskander AS. Pandit UK. Tetrahedron 1994; 50: 7837
  • 17 Gui Y. Tian S.-K. Org. Lett. 2017; 19: 1554
  • 18 Karmakar R. Yun SY. Wang KP. Lee D. Org. Lett. 2014; 16: 6
  • 19 Sato Y. Aoyama T. Shirai H. J. Organomet. Chem. 1974; 82: 21
  • 20 Pine SH. Org. React. 1970; 18: 403
  • 21 Lepley AR. Becker RH. Giumanni AG. J. Org. Chem. 1971; 36: 1222
  • 22 Cant AA. Bertrand GH. V. Henderson JL. Roberts L. Greaney MF. Angew. Chem. Int. Ed. 2009; 48: 5199
  • 23 Liu Z. Larock RC. Org. Lett. 2003; 5: 4673
  • 24 Liu Z. Larock RC. J. Org. Chem. 2006; 71: 3198
  • 25 Bhojgude SS. Kaicharla T. Biju AT. Org. Lett. 2013; 15: 5452
  • 26 Varlamov AV. Guranova NI. Borisova TN. Toze FA. A. Ovcharov MV. Kristancho S. Voskressensky LG. Tetrahedron 2015; 71: 1175
  • 27 Menschutkin N. Z. Phys. Chem. 1890; 6: 41
  • 28 Sommer HZ. Lipp HI. Jackson LL. J. Org. Chem. 1971; 36: 824
  • 29 Sommer HZ. Jackson LL. J. Org. Chem. 1970; 35: 1558
  • 30 Harman D. Stewart TD. Ruben S. J. Am. Chem. Soc. 1942; 64: 2293
  • 31 Henderson WA. Jr. Schultz CJ. J. Org. Chem. 1962; 27: 4643
  • 32 Purse BW. Gissot A. Rebek J. J. Am. Chem. Soc. 2005; 127: 11222
  • 33 Reinheimer JD. Harley JD. Meyers WW. J. Org. Chem. 1963; 28: 1575
  • 34 Taft RW. Pienta NJ. Kamlet MJ. Arnett EM. J. Org. Chem. 1981; 46: 661
  • 35 Wang T.-T. Lou Q.-L. Chem. Eng. J. 2002; 87: 197
  • 36 Hamann SD. Teplitzky DR. Discuss. Faraday Soc. 1956; 22: 114
  • 37 Harris AP. Weale KE. J. Chem. Soc. 1961; 146
  • 38 Stanger KJ. Lee J.-J. Smith BD. J. Org. Chem. 2007; 72: 9663
  • 39 Grob CA. Schlageter MG. Helv. Chim. Acta 1977; 60: 1884
  • 40 de Araújo Felix L. de Oliveira CA. F. Kross RK. Peppe C. Brown MA. Tuck DG. Hernandes MZ. Longo E. Sensato FR. J. Organomet. Chem. 2000; 603: 203
  • 41 Tang L. Sun Y. Zhou L. Shao T. Asian J. Chem. 2013; 25: 6240
  • 42 Carey FA. Sundberg RJ. Advanced Organic Chemistry. Part A: Structure and Mechanisms . Springer Science & Business Media; New York: 2007
  • 43 Bader H. Hansen AR. McCarty FJ. J. Org. Chem. 1966; 31: 2319
  • 44 Bunnett JF. Garbisch EW. Jr. Pruitt KM. J. Am. Chem. Soc. 1957; 79: 385
  • 45 Pietra F. Del Cima F. J. Org. Chem. 1968; 33: 1411
  • 46 Li W. Yun L. Wang H. Synth. Commun. 2002; 32: 2657
  • 47 Derabli C. Boulcina R. Kirsch G. Debache A. Tetrahedron 2017; 73: 351
  • 48 Meisenheimer J. Justus Liebigs Ann. Chem. 1902; 323: 205
  • 49 Matsumoto K. Sera A. Uchida T. Synthesis 1985; 1
  • 50 Ibata T. Isogami Y. Toyoda J. Chem. Lett. 1987; 1187
  • 51 Zhu Z.-Q. Xiang S. Chen Q.-Y. Chen C. Zeng Z. Cui Y.-P. Xiao J.-C. Chem. Commun. 2008; 5016
  • 52 Bharate SB. Manda S. Joshi P. Singh B. Vishwakarma RA. Med. Chem. Commun. 2012; 3: 1098
  • 53 Barlin GB. Young AC. J. Chem. Soc. B 1971; 821
  • 54 Barlin GB. Young AC. J. Chem. Soc. B 1971; 1675
  • 55 Olberg DE. Arukwe JM. Grace D. Hjelstuen OK. Solbakken M. Kindberg GM. Cuthbertson A. J. Med. Chem. 2010; 53: 1732
  • 56 Kunishima M. Kawachi C. Iwasaki F. Terao K. Tani S. Tetrahedron Lett. 1999; 40: 5327
  • 57 Kunishima M. Ujigawa T. Nagaoka Y. Kawachi C. Hioki K. Shiro M. Chem. Eur. J. 2012; 18: 15856
  • 58 Kamiński ZJ. Kolesińska B. Kolesińska J. Sabatino G. Chelli M. Rovero P. Błaszczyk M. Główka ML. Papini AM. J. Am. Chem. Soc. 2005; 127: 16912
  • 59 Zincke T. Heuser G. Möller W. Justus Liebigs Ann. Chem. 1904; 333: 296
  • 60 Cheng W.-C. Kurth MJ. Org. Prep. Proced. Int. 2002; 34: 585
  • 61 Zeghbib N. Thelliere P. Rivard M. Martens T. J. Org. Chem. 2016; 81: 3256
  • 62 Osterby BR. McKelvey RD. J. Chem. Educ. 1996; 73: 260
  • 63 Paley MS. Harris JM. J. Org. Chem. 1991; 56: 568
  • 64 Dimroth K. Reichardt C. Siepmann T. Bohlmann F. Justus Liebigs Ann. Chem. 1963; 661: 1
  • 65 Filippi A. Lilla G. Occhiucci G. Sparapani C. Ursini O. Speranza M. J. Org. Chem. 1995; 60: 1250
  • 66 Fagnoni M. Albini A. Acc. Chem. Res. 2005; 38: 713
  • 67 Milanesi S. Fagnoni M. Albini A. J. Org. Chem. 2005; 70: 603
  • 68 Hellwinkel D. Seifert H. Chem. Ber. 1972; 105: 880
  • 69 Speranza M. Chem. Rev. 1993; 93: 2933
  • 70 Shchepina NE. Nefedov VD. Toropova MA. Avrorin VV. Lewis SB. Mattson B. Tetrahedron Lett. 2000; 41: 5303
  • 71 Goldberg I. Ber. Dtsch. Chem. Ges. 1906; 39: 1691
  • 72 Ullmann F. Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
  • 73 Zhang H. Cai Q. Ma D. J. Org. Chem. 2005; 70: 5164
  • 74 Kiyomori A. Marcoux J.-F. Buchwald SL. Tetrahedron Lett. 1999; 40: 2657
  • 75 Ma D. Cai Q. Synlett 2004; 128
  • 76 Lam PY. Clark CG. Saubern S. Adams J. Winters MP. Chan DM. Combs A. Tetrahedron Lett. 1998; 39: 2941
  • 77 Phipps RJ. McMurray L. Ritter S. Duong HA. Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
  • 78 Lv T. Wang Z. You J. Lan J. Gao G. J. Org. Chem. 2013; 78: 5723
  • 79 Li S. Yang F. Lv T. Lan J. Gao G. You J. Chem. Commun. 2014; 50: 3941
  • 80 Tzur E. Ben-Asuly A. Diesendruck CE. Goldberg I. Lemcoff NG. Angew. Chem. Int. Ed. 2008; 47: 6422
  • 81 Levin E. Ivry E. Diesendruck CE. Lemcoff NG. Chem. Rev. 2015; 115: 4607
  • 82 Arduengo AJ. Krafczyk R. Schmutzler R. Craig HA. Goerlich JR. Marshall WJ. Unverzagt M. Tetrahedron 1999; 55: 14523
  • 83 Benhamou L. Chardon E. Lavigne G. Bellemin-Laponnaz S. César V. Chem. Rev. 2011; 111: 2705
  • 84 May M. Bardos TJ. Barger FL. Lansford M. Ravel JM. Sutherland GL. Shive W. J. Am. Chem. Soc. 1951; 73: 3067
  • 85 Queval P. Jahier C. Rouen M. Artur I. Legeay J. Falivene L. Toupet L. Crévisy C. Cavallo L. Baslé O. Mauduit M. Angew. Chem. Int. Ed. 2013; 52: 14103 ; Angew. Chem. 2013, 125, 14353
  • 86 Yoshida H. Sugiura S. Kunai A. Org. Lett. 2002; 4: 2767
  • 87 Maier WF. Lau GC. McEwen AB. J. Am. Chem. Soc. 1985; 107: 4724
  • 88 Diesendruck CE. Zhu L. Moore JS. Chem. Commun. 2014; 50: 13235
  • 89 Wittig G. Benz E. Chem. Ber. 1959; 92: 1999
  • 90 von Hofmann AW. Ann. Chem. Pharm. 1851; 78: 253
  • 91 Biju AT. Glorius F. Angew. Chem. Int. Ed. 2010; 49: 9761
  • 92 Okuma K. Nojima A. Nakamura Y. Matsunaga N. Nagahora N. Shioji K. Bull. Chem. Soc. Jpn. 2011; 84: 328
  • 93 Hirsch M. Dhara S. Diesendruck CE. Org. Lett. 2016; 18: 980
  • 94 Stevens TS. Creighton EM. Gordon AB. MacNicol M. J. Chem. Soc. 1928; 3193