Synthesis 2017; 49(15): 3224-3236
DOI: 10.1055/s-0036-1588838
short review
© Georg Thieme Verlag Stuttgart · New York

Novel Noncovalent Interactions in Catalysis: A Focus on Halogen, Chalcogen, and Anion-π Bonding

Department für Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany   Email: [email protected]
,
Daniel von der Heiden
,
Julie Schmauck
› Author Affiliations
Financial support from the Fonds der Chemischen Industrie (Liebig scholarship to M.B. and Ph.D. scholarships to J.S. and D.v.d.H.) as well as from the University of Cologne within the Excellence Initiative is gratefully acknowledged.
Further Information

Publication History

Received: 26 April 2017

Accepted after revision: 28 April 2017

Publication Date:
23 May 2017 (online)


Dedicated to Professor Herbert Mayr on the occasion of his 70th birthday.

Abstract

Noncovalent interactions play an important role in many biological and chemical processes. Among these, hydrogen bonding is very well studied and is already routinely used in organocatalysis. This Short Review focuses on three other types of promising noncovalent interactions. Halogen bonding, chalcogen bonding, and anion-π bonding have been introduced into organocatalysis in the last few years and could become important alternate modes of activation to hydrogen bonding in the future.

1 Introduction

2 Halogen Bonding

3 Chalcogen Bonding

4 Anion-π Bonding

5 Conclusions

 
  • References

  • 1 These authors contributed equally.
  • 2 Pauling L. The Nature of the Chemical Bond . 3rd ed. Cornell University Press; Ithaca, NY: 1960
    • 4a Alkorta I. Elguero J. Chem. Soc. Rev. 1998; 27: 163
    • 4b Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 4c Doyle AG. Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 4d Pihko PM. Hydrogen Bonding in Organic Synthesis . Wiley-VCH; Weinheim: 2009
    • 4e Horowitz S. Trievel RC. J. Biol. Chem. 2012; 287: 41576
    • 4f Adachi T. Ward MD. Acc. Chem. Res. 2016; 49: 2669
    • 5a Schneider H.-J. Angew. Chem. Int. Ed. 2009; 48: 3924
    • 5b Dougherty DA. Acc. Chem. Res. 2012; 46: 885
    • 5c Scheiner S. Acc. Chem. Res. 2012; 46: 280
    • 5d Priimagi A. Cavallo G. Metrangolo P. Resnati G. Acc. Chem. Res. 2013; 46: 2686
    • 5e Chifotides HT. Dunbar KR. Acc. Chem. Res. 2013; 46: 894
    • 5f Wheeler SE. Bloom JW. G. J. Phys. Chem. A 2014; 118: 6133
    • 5g Wagner JP. Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
  • 6 Desiraju GR. Ho PS. Kloo L. Legon AC. Marquardt R. Metrangolo P. Politzer P. Resnati G. Rissanen K. Pure Appl. Chem. 2013; 85: 1711
  • 7 Colin M. Ann. Chim. 1814; 91: 252
  • 8 Guthrie F. J. Chem. Soc. 1863; 239
  • 9 Mulliken RS. J. Am. Chem. Soc. 1950; 72: 600
  • 10 Wang C. Danovich D. Mo Y. Shaik S. J. Chem. Theory Comput. 2014; 10: 3726
    • 11a Politzer P. Lane P. Concha M. Ma Y. Murray J. J. Mol. Model. 2007; 13: 305
    • 11b Murray J. Lane P. Politzer P. J. Mol. Model 2009; 15: 723
    • 11c Murray JS. Politzer P. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011; 1: 153
    • 12a Metrangolo P. Resnati G. Halogen Bonding I . Springer; Switzerland: 2015
    • 12b Metrangolo P. Resnati G. Halogen Bonding II 2015
    • 12c Cavallo G. Metrangolo P. Milani R. Pilati T. Priimagi A. Resnati G. Terraneo G. Chem. Rev. 2016; 116: 2478
    • 12d Bulfield D. Huber SM. Chem. Eur. J. 2016; 22: 14434
  • 14 Sarwar MG. Dragisic B. Salsberg LJ. Gouliaras C. Taylor MS. J. Am. Chem. Soc. 2010; 132: 1646
  • 15 Dumele O. Wu D. Trapp N. Goroff N. Diederich F. Org. Lett. 2014; 16: 4722
  • 16 Puttreddy R. Jurcek O. Bhowmik S. Makela T. Rissanen K. Chem. Commun. 2016; 2338
  • 17 Laurence C. Queignec-Cabanetos M. Wojtkowiak B. J. CHem. Soc., Perkin Trans. 2 1982; 1605
  • 18 Walter SM. Kniep F. Rout L. Schmidtchen FP. Herdtweck E. Huber SM. J. Am. Chem. Soc. 2012; 134: 8507
    • 19a Jungbauer SH. Schindler S. Herdtweck E. Keller S. Huber SM. Chem. Eur. J. 2015; 21: 13625
    • 19b Robertson CC. Perutz RN. Brammer L. Hunter CA. Chem. Sci. 2014; 5: 4179
  • 20 Webb JA. Klijn JE. Hill PA. Bennett JL. Goroff NS. J. Org. Chem. 2004; 69: 660
  • 21 Hibbert H. J. Am. Chem. Soc. 1915; 37: 1748
    • 22a Togo H. Iida S. Synlett 2006; 2159
    • 22b Jereb M. Vražič D. Zupan M. Tetrahedron 2011; 67: 1355
    • 22c Ren Y.-M. Cai C. Yang R.-C. RSC Adv. 2013; 3: 7182
    • 23a Cruickshank FR. Benson SW. J. Phys. Chem. 1969; 73: 733
    • 23b Truesdale VW. Luther GW. Greenwood JE. Phys. Chem. Chem. Phys. 2003; 5: 3428
  • 24 The concept of hidden Brønsted acid catalysis was originally introduced by Hintermann, see: Dang TT. Boeck F. Hintermann L. J. Org. Chem. 2011; 76: 9353
    • 25a Breugst M. Detmar E. von der Heiden D. ACS Catal. 2016; 6: 3203
    • 25b von der Heiden D. Bozkus S. Klussmann M. Breugst M. J. Org. Chem. 2017; 82: 4037
  • 26 Bruckmann A. Pena MA. Bolm C. Synlett 2008; 900
  • 27 He W. Ge Y.-C. Tan C.-H. Org. Lett. 2014; 16: 3244
    • 28a Walter SM. Kniep F. Herdtweck E. Huber SM. Angew. Chem. Int. Ed. 2011; 50: 7187
    • 28b Kniep F. Rout L. Walter SM. Bensch HK. V. Jungbauer SH. Herdtweck E. Huber SM. Chem. Commun. 2012; 9299
    • 28c Walter SM. Jungbauer SH. Kniep F. Schindler S. Herdtweck E. Huber SM. J. Fluorine Chem. 2013; 150: 14
    • 28d Kniep F. Jungbauer SH. Zhang Q. Walter SM. Schindler S. Schnapperelle I. Herdtweck E. Huber SM. Angew. Chem. Int. Ed. 2013; 52: 7028
    • 28e Jungbauer SH. Huber SM. J. Am. Chem. Soc. 2015; 137: 12110
  • 29 Castelli R. Schindler S. Walter SM. Kniep F. Overkleeft HS. Van der Marel GA. Huber SM. Codée JD. C. Chem. Asian J. 2014; 9: 2095
  • 30 Tsuji N. Kobayashi Y. Takemoto Y. Chem. Commun. 2014; 13691
  • 31 Haynes WM. CRC Handbook of Chemistry and Physics . 97th ed. CRC Press; Boca Raton: 2016
  • 32 Jungbauer SH. Walter SM. Schindler S. Rout L. Kniep F. Huber SM. Chem. Commun. 2014; 6281
  • 33 Takeda Y. Hisakuni D. Lin C.-H. Minakata S. Org. Lett. 2015; 17: 318
    • 34a Kazi I. Guha S. Sekar G. Org. Lett. 2017; 19: 1244
    • 34b Arai T. Suzuki T. Inoue T. Kuwano S. Synlett 2017; 28: 122
    • 35a Reid KS. C. Lindley PF. Thornton JM. FEBS Lett. 1985; 190: 209
    • 35b Zauhar RJ. Colbert CL. Morgan RS. Welsh WJ. Biopolymers 2000; 53: 233
    • 36a Adhikari U. Scheiner S. J. Phys. Chem. A 2014; 118: 3183
    • 36b Bauzá A. Quiñonero D. Deyà PM. Frontera A. CrystEngComm 2013; 3137
  • 37 Alvarez S. Dalton Trans. 2013; 8617
    • 38a Murray JS. Lane P. Politzer P. Int. J. Quantum Chem. 2007; 107: 2286
    • 38b Politzer P. Murray JS. Clark T. Phys. Chem. Chem. Phys. 2013; 15: 11178
    • 38c Clark T. Politzer P. Murray JS. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015; 5: 169
  • 39 Scheiner S. Int. J. Quantum Chem. 2013; 113: 1609
  • 40 Iwaoka M. Tomoda S. J. Am. Chem. Soc. 1996; 118: 8077
  • 41 Komatsu H. Iwaoka M. Tomoda S. Chem. Commun. 1999; 205
  • 42 Semenov NA. Lonchakov AV. Pushkarevsky NA. Suturina EA. Korolev VV. Lork E. Vasiliev VG. Konchenko SN. Beckmann J. Gritsan NP. Zibarev AV. Organometallics 2014; 33: 4302
  • 43 Garrett GE. Gibson GL. Straus RN. Seferos DS. Taylor MS. J. Am. Chem. Soc. 2015; 137: 4126
  • 44 Zhou Y.-P. Zhang M. Li Y.-H. Guan Q.-R. Wang F. Lin Z.-J. Lam C.-K. Feng X.-L. Chao H.-Y. Inorg. Chem. 2012; 51: 5099
  • 45 Adhikari U. Scheiner S. J. Phys. Chem. A 2012; 116: 3487
  • 46 Scheiner S. J. Chem. Phys. 2011; 134: 164313
  • 47 Benz S. Macchione M. Verolet Q. Mareda J. Sakai N. Matile S. J. Am. Chem. Soc. 2016; 138: 9093
  • 48 Robinson ER. T. Walden DM. Fallan C. Greenhalgh MD. Cheong PH.-Y. Smith AD. Chem. Sci. 2016; 7: 6919
  • 49 Benz S. López-Andarias J. Mareda J. Sakai N. Matile S. Angew. Chem. Int. Ed. 2017; 56: 812
  • 50 Adhikari U. Scheiner S. Chem. Phys. Lett. 2012; 532: 31
    • 51a Gamez P. Mooibroek TJ. Teat SJ. Reedijk J. Acc. Chem. Res. 2007; 40: 435
    • 51b Schottel BL. Chifotides HT. Dunbar KR. Chem. Soc. Rev. 2008; 37: 68
    • 52a Ma JC. Dougherty DA. Chem. Rev. 1997; 97: 1303
    • 52b Neel AJ. Hilton MJ. Sigman MS. Toste FD. Nature 2017; 543: 637
    • 53a Giese M. Albrecht M. Rissanen K. Chem. Commun. 2016; 1778
    • 53b Giese M. Albrecht M. Rissanen K. Chem. Rev. 2015; 115: 8867
  • 54 Frontera A. Gamez P. Mascal M. Mooibroek TJ. Reedijk J. Angew. Chem. Int. Ed. 2011; 50: 9564
  • 55 Mascal M. Armstrong A. Bartberger MD. J. Am. Chem. Soc. 2002; 124: 6274
    • 56a Alkorta I. Rozas I. Elguero J. J. Am. Chem. Soc. 2002; 124: 8593
    • 56b Quiñonero D. Garau C. Rotger C. Frontera A. Ballester P. Costa A. Deyà PM. Angew. Chem. Int. Ed. 2002; 41: 3389
  • 57 García-Raso A. Albertí FM. Fiol JJ. Tasada A. Barceló-Oliver M. Molins E. Estarellas C. Frontera A. Quiñonero D. Deyà PM. Cryst. Growth Des. 2009; 9: 2363
  • 58 Kim D. Tarakeshwar P. Kim KS. J. Phys. Chem. A 2004; 108: 1250
  • 59 Berryman OB. Sather AC. Hay BP. Meisner JS. Johnson DW. J. Am. Chem. Soc. 2008; 130: 10895
  • 60 Dawson RE. Hennig A. Weimann DP. Emery D. Ravikumar V. Montenegro J. Takeuchi T. Gabutti S. Mayor M. Mareda J. Schalley CA. Matile S. Nat. Chem. 2010; 2: 533
    • 61a Zhao Y. Domoto Y. Orentas E. Beuchat C. Emery D. Mareda J. Sakai N. Matile S. Angew. Chem. Int. Ed. 2013; 52: 9940
    • 61b Zhao Y. Beuchat C. Domoto Y. Gajewy J. Wilson A. Mareda J. Sakai N. Matile S. J. Am. Chem. Soc. 2014; 136: 2101
  • 62 Lu T. Wheeler SE. Org. Lett. 2014; 16: 3268
    • 63a Berkessel A. Das S. Pekel D. Neudörfl J.-M. Angew. Chem. Int. Ed. 2014; 53: 11660
    • 63b Das S. Pekel D. Neudörfl J.-M. Berkessel A. Angew. Chem. Int. Ed. 2015; 54: 12479
  • 64 Wiesner M. Revell JD. Wennemers H. Angew. Chem. Int. Ed. 2008; 47: 1871
  • 65 Zhao Y. Cotelle Y. Avestro AJ. Sakai N. Matile S. J. Am. Chem. Soc. 2015; 137: 11582
  • 66 Wang C. Miros FN. Mareda J. Sakai N. Matile S. Angew. Chem. Int. Ed. 2016; 55: 14422
    • 67a Cotelle Y. Benz S. Avestro A.-J. Ward TR. Sakai N. Matile S. Angew. Chem. Int. Ed. 2016; 55: 4275
    • 67b Liu L. Cotelle Y. Avestro A.-J. Sakai N. Matile S. J. Am. Chem. Soc. 2016; 138: 7876