Synthesis 2017; 49(12): 2640-2651
DOI: 10.1055/s-0036-1588817
feature
© Georg Thieme Verlag Stuttgart · New York

Some Aspects of Reductive Amination in the Presence of Carbon Monoxide: Cyclopropyl Ketones as Bifunctional Electrophiles

Oleg I. Afanasyev
a  Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
,
Alexey A. Tsygankov
a  Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
d  Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
,
Dmitry L. Usanov
b  Current address:Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
,
Dmitry S. Perekalin
a  Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
,
Alexandra D. Samoylova
c  Moscow Chemical Lyceum, Tamozhenniy proezd 4, Moscow 111033, Russian Federation   Email: chusov@ineos.ac.ru   Email: denis.chusov@gmail.com
,
Denis Chusov*
a  Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
c  Moscow Chemical Lyceum, Tamozhenniy proezd 4, Moscow 111033, Russian Federation   Email: chusov@ineos.ac.ru   Email: denis.chusov@gmail.com
› Author Affiliations
The work was financially supported by the Russian Science Foundation (grant # 16-13-10393).
Further Information

Publication History

Received: 22 February 2017

Accepted after revision: 07 April 2017

Publication Date:
18 May 2017 (online)

Abstract

We conducted detailed studies on CO-assisted reductive chemistry with cyclopropyl ketones as a special type of substrate. Multiple factors influencing the outcome of the reaction have been studied for both ruthenium and rhodium catalysis. An unusual rearrangement of aminomethylcyclopropanes was found. We showed that some reductive reactions, which were believed to proceed through a water–gas shift reaction pathway, can nonetheless take place even without an external or internal water source, indicating a more interesting reaction mechanism. Cyclopropylketones were employed as bifunctional electrophiles and, depending on the conditions, the reaction with an amine can lead to a number of products, including aminoketones, cyclopropyl methylamines, pyrrolidines or 1,4-diaminopentanes.

Supporting Information

 
  • References

  • 1 Warren S. Wyatt P. Organic Synthesis, 2nd Edition: The Disconnection Approach. Oxford; Wiley-Blackwell: 2008: 54
    • 2a Chusov D. List B. Angew. Chem. Int. Ed. 2014; 53: 5199
    • 2b Kolesnikov PN. Usanov DL. Barablina EA. Maleev VI. Chusov D. Org. Lett. 2014; 16: 5068
    • 2c Kolesnikov PN. Yagafarov NZ. Usanov DL. Maleev VI. Chusov D. Org. Lett. 2015; 17: 173
    • 2d Yagafarov NZ. Kolesnikov PN. Usanov DL. Novikov VV. Nelyubina YV. Chusov D. Chem. Commun. 2016; 52: 1397
    • 2e Afanasyev OI. Tsygankov AA. Usanov DL. Perekalin DS. Shvydkiy NV. Maleev VI. Kudinov AR. Chusov D. ACS Catal. 2016; 6: 2043
  • 3 Afanasyev OI. Tsygankov AA. Usanov DL. Chusov D. Org. Lett. 2016; 18: 5968

    • For the importance of cyclopropanes in organic synthesis, see:
    • 4a Kulinkovich OG. Cyclopropanes in Organic Synthesis . John Wiley & Sons; New York: 2015
    • 4b Kopp F. Sklute G. Polborn K. Marek I. Knochel P. Org. Lett. 2005; 7: 3789
    • 4c Rauhut CB. Cervino C. Krasovskiy A. Knochel P. Synlett 2009; 67
    • 4d Carson CA. Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 4e Ganesh V. Chandrasekaran S. Synthesis 2016; 48: 4347
    • 4f Rassadin VA. Six Y. Tetrahedron 2016; 72: 4701

      Donor–acceptor cyclopropanes can lead to various interesting transformations (see refs. 5 and 6). The natural limitation is that the starting material should contain both electron-donating and electron-withdrawing groups, so we decided to use accessible methyl cyclopropyl ketone, which is available on a bulk scale. For a review on chemistry of DA cyclopropanes, see:
    • 5a Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
    • 5b Reissig H.-U. Zimmer R. Chem. Rev. 2003; 103: 1151
    • 5c Yu M. Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 5d Agrawal D. Yadav VK. Chem. Commun. 2008; 6471
    • 5e Carson CA. Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 5f De Simone F. Waser J. Synthesis 2009; 3353
    • 5g Campbell MJ. Johnson JS. Parsons AT. Pohlhaus PD. Sanders SD. J. Org. Chem. 2010; 75: 6317
    • 5h Lebold TP. Kerr MA. Pure Appl. Chem. 2010; 82: 1797
    • 5i Kaschel J. Werz DB. Nachr. Chem. 2011; 59: 729
    • 5j Mel’nikov MY. Budynina EM. Ivanova OA. Trushkov IV. Mendeleev Commun. 2011; 21: 293
    • 5k Wang Z. Synlett 2012; 23: 2311
    • 5l Cavitt MA. Phun LH. France S. Chem. Soc. Rev. 2014; 43: 804
    • 5m Schneider TF. Kaschel J. Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 5n de Nanteuil F. De Simone F. Frei R. Benfatti F. Serrano E. Waser J. Chem. Commun. 2014; 50: 10912
    • 5o Novikov RA. Tomilov YuV. Mendeleev Commun. 2015; 25: 1
    • 5p Grover HK. Emmett MR. Kerr MA. Org. Biomol. Chem. 2015; 13: 655
    • 5q Tabolin AA. Ioffe SL. Isr. J. Chem. 2016; 56: 385
    • 5r Trushkov IV. Isr. J. Chem. 2016; 56: 369
    • 5s Deng Y. Doyle MP. Isr. J. Chem. 2016; 56: 399
    • 5t Ganesh V. Sridhar PR. Chandrasekaran S. Isr. J. Chem. 2016; 56: 417
    • 5u O’Connor NR. Wood JL. Stoltz BM. Isr. J. Chem. 2016; 56: 431
    • 5v Talukdar R. Saha A. Ghorai MK. Isr. J. Chem. 2016; 56: 445
    • 5w Selvi T. Srinivasan K. Isr. J. Chem. 2016; 56: 454
    • 5x Wang L. Tang Y. Isr. J. Chem. 2016; 56: 463
    • 5y Kerr MA. Isr. J. Chem. 2016; 56: 476
    • 5z Martin MC. Shenje R. France S. Isr. J. Chem. 2016; 56: 499
    • 5aa Pandey AK. Ghosh A. Banerjee P. Isr. J. Chem. 2016; 56: 512
    • 5ab Candish L. Gillard RM. Fernando JE. M. Levens A. Lupton DW. Isr. J. Chem. 2016; 56: 522
    • 5ac Reiser O. Isr. J. Chem. 2016; 56: 531

      For some recent example of DA cyclopropanes, see:
    • 6a Ivanova OA. Budynina EM. Grishin YuK. Trushkov IV. Verteletskii PV. Eur. J. Org. Chem. 2008; 5329
    • 6b Chagarovskiy AO. Ivanova OA. Budynina EM. Trushkov IV. Melnikov MYa. Tetrahedron Lett. 2011; 52: 4421
    • 6c Xu H. Qu J.-P. Liao S. Xiong H. Tang Y. Angew. Chem. Int. Ed. 2013; 52: 4004
    • 6d Mikhaylov AA. Novikov RA. Khomutova YA. Arkhipov DE. Korlyukov AA. Tabolin AA. Tomilov YV. Ioffe SL. Synlett 2014; 25: 2275
    • 6e Rakhmankulov ER. Ivanov KL. Budynina EM. Ivanova OA. Chagarovskiy AO. Skvortsov DA. Latyshev GV. Trushkov IV. Melnikov MYa. Org. Lett. 2015; 17: 770
    • 6f Ivanov KL. Villemson EV. Budynina EM. Ivanova OA. Trushkov IV. Melnikov MYa. Chem. Eur. J. 2015; 21: 4975
    • 6g Chidley T. Vemula N. Carson CA. Kerr MA. Pagenkopf BL. Org. Lett. 2016; 18: 2922
    • 6h Tabolin AA. Gorbacheva EO. Novikov RA. Khoroshutina YA. Nelyubina YV. Ioffe SL. Izv. Akad. Nauk, Ser. Khim. 2016; 9: 2243
    • 6i Mikhaylov AA. Dilman AD. Novikov RA. Khoroshutina YA. Struchkova MI. Arkhipov DE. Nelyubina YV. Tabolin AA. Ioffe SL. Tetrahedron Lett. 2016; 57: 11
    • 6j Ivanova OA. Budynina EM. Skvortsov DA. Trushkov IV. Melnikov MYa. Chem. Eur. J. 2016; 22: 1223
    • 6k Budynina EM. Ivanov KL. Chagarovskiy AO. Rybakov VB. Trushkov IV. Melnikov MY. Chem. Eur. J. 2016; 22: 3692

      For some examples of pyrrolidine synthesis, see:
    • 7a Fujita K.-I. Fujii T. Yamaguchi R. Org. Lett. 2004; 6: 3525
    • 7b Sato M. Gunji Y. Ikeno T. Yamada T. Synthesis 2004; 1434
    • 7c Nguyen TM. Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
    • 7d Ozawa T. Kurahashi T. Matsubara S. Synlett 2013; 24: 2763

      For some examples of pyrrolidine derivatives as catalysts, see:
    • 8a List B. Lerner RA. Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
    • 8b Pojarliev P. Biller W. Martin H. List B. Synlett 2003; 1903
    • 8c Zhang F. Peng Y. Liao S. Gong Y. Tetrahedron 2007; 63: 4636
    • 8d Chandler C. Galzerano P. Michrowska A. List B. Angew. Chem. Int. Ed. 2009; 48: 1978
    • 8e Martinez Cuezva A. Zumbansen K. Döhring A. van Gemmeren M. List B. Synlett 2014; 25: 932

      For some examples of natural products and drugs with a pyrrolidine core, see:
    • 9a Amara Z. Caron J. Joseph D. Nat. Prod. Rep. 2013; 30: 1211
    • 9b Bhat C. Tilve SG. RSC Adv. 2014; 4: 5405
    • 9c Milen M. Abranyi-Balogh P. Keglevich G. Curr. Org. Synth. 2014; 11: 889
    • 9d Lood CS. Koskinen AM. P. Chem. Heterocycl. Compd. 2015; 50: 1367
    • 9e Shimokawa J. Chiyoda K. Umihara H. Fukuyama T. Chem. Pharm. Bull. 2016; 64: 1239
    • 9f Tanokashira N. Kukita S. Kato H. Nehira T. Angkouw ED. Mangindaan RE. P. de Voogd NJ. Tsukamoto S. Tetrahedron 2016; 72: 5530
    • 9g Pandey G. Dey D. Tiwari SK. Tetrahedron Lett. 2017; 58: 699
    • 9h De Luca L. Chiminazzo A. Sperni L. Strukul G. Scarso A. Chem. Eur. J. 2017; 23: 3474

      For some examples of Cloke–Wilson rearrangement, see:
    • 10a Cloke JB. J. Am. Chem. Soc. 1929; 51: 1174
    • 10b Wilson CL. J. Am. Chem. Soc. 1947; 69: 3002
    • 10c Zuo G. Louie J. Angew. Chem. Int. Ed. 2004; 43: 2277
    • 10d Wurz RP. Charette AB. Org. Lett. 2005; 7: 2313
    • 10e Gopi E. Namboothiri IN. N. J. Org. Chem. 2013; 78: 910
    • 10f Lin C.-H. Pursley D. Klein JE. M. N. Teske J. Allen JA. Rami F. Kohn A. Plietker B. Chem. Sci. 2015; 6: 7034
  • 11 For ring-opening of donor–acceptor cyclopropanes with amines, see: Lifchits O. Charette AB. Org. Lett. 2008; 10: 2809
  • 12 Calculations at the M06/SVP level have been shown to provide a good estimate for thermochemistry of organometallic reactions, see: Gusev DG. Organometallics 2013; 32: 4239
  • 13 Non-specific solvation was taken in account by using the PCM model. However, specific solvation (e.g., hydrogen bonding) was not taken into account and therefore the results of the calculations should be considered as estimates.
    • 14a Hill AF. Angew. Chem. Int. Ed. 2000; 39: 130
    • 14b Lavigne G. Eur. J. Inorg. Chem. 1999; 917
  • 15 Kolomnikov IS. Lysyak TV. Rusakov SL. Kharitonov YuYa. Russ. Chem. Rev. 1988; 57: 406
  • 16 Ambrosi A. Denmark SE. Angew. Chem. Int. Ed. 2016; 55: 12164

    • For recent applications of carbon monoxide as a reducing agent, see:
    • 17a Denmark SE. Nguyen ST. Org. Lett. 2009; 11: 781
    • 17b Denmark SE. Matesich ZD. J. Org. Chem. 2014; 79: 5970
    • 17c Li H.-Q. Liu X. Zhang Q. Li S.-S. Liu Y.-M. He H.-Y. Cao Y. Chem. Commun. 2015; 51: 11217
    • 17d Park JW. Chung YK. ACS Catal. 2015; 5: 4846
  • 18 Ford CP. Acc. Chem. Res. 1981; 14: 31 ; and references therein