Synthesis 2017; 49(13): 2917-2927
DOI: 10.1055/s-0036-1588792
special topic
© Georg Thieme Verlag Stuttgart · New York

Synthesis of N-Substituted 2-Amino-3,4-diiodofurans from Allenes via NIS-Mediated Intramolecular Electrophilic Iodocyclization

Guangchen Li
a  Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China
,
Daisy Zhang-Negrerie
b  Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China   Email: duyunfeier@tju.edu.cn
,
Yunfei Du*
a  Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China
b  Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China   Email: duyunfeier@tju.edu.cn
› Author Affiliations
Supported by: National Natural Science Foundation of China (21472136)
Supported by: National Basic Research Project (2014CB932201)
Supported by: Tianjin Research Program of Application Foundation and Advanced Technology (15JCZDJC32900)
Further Information

Publication History

Received: 28 February 2017

Accepted after revision: 24 March 2017

Publication Date:
20 April 2017 (online)

Published as part of the Special Topic Modern Strategies with Iodine in Synthesis

Abstract

A facile and efficient method for the syntheses of N-substituted 2-amino-3,4-diiodofurans from various readily available allenic amides has been developed. The reaction was postulated to proceed via an NIS-mediated electrophilic iodocyclization pathway.

Supporting Information

 
  • References


    • For selected examples, see:
    • 1a Maugarda T. Enauda E. Choisyb PM. Legoya D. Phytochemistry 2001; 58: 897
    • 1b Polychronopoulos P. Magiatis P. Skaltsounis A. Myrianthopoulos V. Mikros E. Tarricone A. Musacchio A. Roe M. Pearl L. Leost M. Greengard P. Meijer L. J. Med. Chem. 2004; 47: 935
    • 1c Rui L. Reardon KF. Wood TK. Appl. Microbiol. Biotechnol. 2005; 66: 422
    • 1d Sassatelli M. Bouchikhi F. Aboab B. Anizon F. Fabbro D. Prudhomme M. Moreau P. Anti-Cancer Drugs 2007; 18: 1069
    • 1e Stanislav LJ. Petra H. Antonín L. Dyes Pigm. 2010; 85: 171
    • 1f Gui YY. Yang J. Qi LW. Wang X. Tian F. Li XN. Peng L. Wang LX. Org. Biomol. Chem. 2015; 13: 6371

      For selected examples, see:
    • 2a Hou XL. Cheung HY. Hon TY. Kwan PL. Lo TH. Tong SY. Wong HN. C. Tetrahedron 1998; 54: 1955
    • 2b Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
    • 2c Kirsch G. Hesse S. Comel A. Curr. Org. Synth. 2004; 1: 47
    • 2d Balme G. Bouyssi D. Lomberget T. Monteiro N. Synthesis 2003; 2115
    • 2e Jeevanandam A. Ghule A. Ling Y.-C. Curr. Org. Chem. 2002; 6: 841
    • 2f Cacchi S. Fabrizi G. Goggiomani A. Heterocycles 2002; 56: 613
    • 2g Casey CP. Strotman NA. J. Org. Chem. 2005; 70: 2576
    • 2h Yao T. Zhang X. Larock RC. J. Am. Chem. Soc. 2004; 126: 11164
    • 2i Bates CG. Saejueng P. Murphy JM. Venkataraman D. Org. Lett. 2002; 4: 4727

      For the synthesis of dihalogenated furans, see:
    • 3a Ji K.-G. Zhu H.-T. Yang F. Shu X.-Z. Zhao S.-C. Liu X.-Y. Shaukat A. Liang Y.-M. Chem. Eur. J. 2010; 16: 6151
    • 3b Ji K.-G. Zhu H.-T. Yang F. Shaukat A. Xia X.-F. Yang Y.-F. Liu X.-Y. Liang Y.-M. J. Org. Chem. 2010; 75: 5670
    • 3c Arimitsu S. Jacobsen JM. Hammond GB. J. Org. Chem. 2008; 73: 2886

      For the synthesis of 2-aminofurans, see:
    • 4a Jiang Y. Khong VZ. Y. Lourdusamy E. Park C.-M. Chem. Commun. 2012; 48: 3133
    • 4b Dateer RB. Pati K. Liu R.-S. Chem. Commun 2012; 48: 7200
    • 4c Cheng C. Liu S. Zhu G. Org. Lett. 2015; 17: 1581
    • 4d Nair V. Sreekumar V. Bindu S. Suresh E. Org. Lett. 2005; 7: 2297
    • 4e Li H. Hsung RP. Org. Lett. 2009; 19: 4462
    • 4f Mossetti R. Caprioglio D. Colombano G. Tron GC. Pirali T. Org. Biomol. Chem. 2011; 9: 1627
    • 4g Cheng C. Liu S. Zhu G. J. Org. Chem. 2015; 80: 7604
    • 4h Adib M. Sheikhi E. Kavoosi A. Bijanzadeh HR. Tetrahedron 2010; 66: 9263
    • 5a Yang F. Jin T. Bao M. Yamamoto Y. Chem. Commun. 2011; 47: 4541
    • 5b Yang F. Jin T. Bao M. Yamamoto Y. Tetrahedron 2011; 67: 10147
    • 6a Liu LH. Wang LH. Yang C. Zhang X. Zhang-Negrerie D. Du Y. Zhao K. Org. Lett. 2013; 15: 2906
    • 6b Marshall JA. Wolf MA. J. Org. Chem. 1996; 61: 3238
  • 7 Compound 2a: Formula: C17H13I2NO, unit cell parameters: a = 23.634(4), b = 5.4686(10), c = 25.841(4) C2/c. CCDC 1507066 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 8a Huo Z. Tomeba H. Yamamoto Y. Tetrahedron Lett. 2008; 49: 5531
    • 8b Yamamoto Y. Gridnev ID. Patil NT. Jin T. Chem. Commun. 2009; 5075
    • 8c Fischer D. Tomeba H. Pahadi NK. Patil NT. Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 4764
    • 8d Chen Z. Huang G. Jiang H. Huang H. Pan X. J. Org. Chem. 2011; 76: 1134
    • 8e Sniady A. Wheeler KA. Dembinski R. Org. Lett. 2005; 7: 1769
    • 9a Komeyama K. Saigo N. Miyagi M. Takaki K. Angew. Chem. Int. Ed. 2009; 48: 9875
    • 9b Yao L.-F. Shi M. Chem. Eur. J. 2009; 15: 3875
    • 9c Yao L.-F. Shi M. Org. Lett. 2007; 9: 5187
    • 9d Kim HY. Lee S. Kim S. Oh K. Org. Lett. 2015; 17: 450
    • 9e Lin Y. Liu J.-T. Tetrahedron Lett. 2006; 47: 6075
    • 10a Mongin O. Krishna TR. Werts MH. V. Caminade A.-M. Majoral J.-P. Blanchard-Desce M. Chem. Commun. 2006; 915
    • 10b Nagy A. Kotschy A. Tetrahedron Lett. 2008; 49: 3782
    • 11a Maegawa Y. Waki M. Umemoto A. Shimad T. Inagaki S. Tetrahedron 2013; 69: 5312
    • 11b Wei Z.-L. Xiao Y. Yuan H. Baydyuk M. Petukhov PA. Musachio JL. Kellar KJ. Kozikowski AP. J. Med. Chem. 2005; 48: 1721
    • 11c Frigoli S. Fuganti C. Malpezzi L. Serra S. Org. Process Res. Dev. 2005; 9: 646
  • 12 Himbert G. Diehl K. Schlindwein HJ. Chem. Ber. 1989; 122: 1691