Synthesis 2017; 49(11): 2351-2360
DOI: 10.1055/s-0036-1588784
short review
© Georg Thieme Verlag Stuttgart · New York

Step-by-Step Multifunctionalization of Isoxazoles Based On SEAr Reactions and C–H Direct Arylations

Shinichiro Fuse*
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho,Midori-ku, Yokohama 226-8503, Japan   eMail: sfuse@res.titech.ac.jp   eMail: hiro@res.titech.ac.jp
,
Taiki Morita
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho,Midori-ku, Yokohama 226-8503, Japan   eMail: sfuse@res.titech.ac.jp   eMail: hiro@res.titech.ac.jp
,
Hiroyuki Nakamura*
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho,Midori-ku, Yokohama 226-8503, Japan   eMail: sfuse@res.titech.ac.jp   eMail: hiro@res.titech.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 28. Februar 2017

Accepted: 17. März 2017

Publikationsdatum:
18. April 2017 (online)


Abstract

Functionalized isoxazoles are important as pharmaceuticals and agrochemicals. Generally, electrophilic aromatic substitution or generation of carbanions/electrophilic trapping approach is used to introduce functional groups into unsubstituted heteroaromatics. However, these approaches have not been simple to apply to unsubstituted isoxazoles due to their poor nucleophilicity and instability under basic conditions. Recently several approaches have been reported to overcome these problems. This review summarizes the functionalization of isoxazoles, including SEAr reactions and C–H direct arylations, towards the step-by-step multifunctionalization of isoxazoles.

1 Introduction

2 SEAr Reaction of Isoxazoles

3 Preparation of Isoxazolyl Anions and Their Use for the Synthesis of Functionalized Isoxazoles

4 Other C–C and C–N Bond Formations of Isoxazoles

5 Transition-Metal-Catalyzed C–H Direct Functionalization of Isoxazoles

6 Step-by-Step Multifunctionalization of Isoxazoles

7 Summary and Outlook

 
  • References

  • 1 Claisen L. Lowman O. Ber. Dtsch. Chem. Ges. 1888; 21: 1149

    • Selected reports for clinically used isoxazole containing pharmaceuticals, parecoxib, leflunomide, isocarboxazid, and oxacillin, see:
    • 2a Daring HF. Am. J. Psychiatry 1961; 117: 931
    • 2b Van der Auwera P. Thys JP. Meunier-Carpentier F. Klastersky J. J. Antimicrob. Chemother. 1984; 13: 31
    • 2c Schattenkirchner M. Immunopharmacology 2000; 47: 291
    • 2d Rømsing J. Møiniche S. Acta Anaesth. Scand. 2004; 48: 525
    • 3a Henry WT. Hatzios KK. Weed Res. 1987; 27: 23
    • 3b Kai H. Ichiba T. Miki N. Takase A. Masuko M. J. Pestic. Sci. 1999; 24: 130
  • 4 Taylor RD. MacCoss M. Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 5a Stork G. Hagedorn AA. J. Am. Chem. Soc. 1978; 100: 3609
    • 5b Charest MG. Lerner CD. Brubaker JD. Siegel DR. Myers AG. Science (Washington D. C.) 2005; 308: 395
  • 6 Lindsay-Scott PJ. Clarke A. Richardson J. Org. Lett. 2015; 17: 476
  • 7 Hu F. Szostak M. Adv. Synth. Catal. 2015; 357: 2583
  • 8 Lang SA. J. Lin YI. Isoxazoles and Their Benzo Derivatives . In Comprehensive Heterocyclic Chemistry . Vol. 6. Katritzky AR. Rees CW. Pergamon; Oxford: 1984. Chap. 4.16, 1-130
  • 9 Joule JA. Mills K. Heterocyclic Chemistry . 5th ed. Wiley; Chichester: 2010
  • 10 Létinois U. Schütz J. Härter R. Stoll R. Huffschmidt F. Bonrath W. Karge R. Org. Process Res. Dev. 2013; 17: 427
  • 11 Di Nunno L. Vitale P. Scilimati A. Simone L. Capitelli F. Tetrahedron 2007; 63: 12388
  • 12 Kusumi T. Chang CC. Wheeler M. Kubo I. Nakanishi K. Naoki H. Tetrahedron Lett. 1981; 22: 3451
  • 13 Kochetkov NK. Khomutova ED. Bazilevskii MV. Zh. Obshch. Khim. 1958; 28: 2736
  • 14 Kochetkov NK. Khomutova ED. Zh. Obshch. Khim. 1959; 29: 535
  • 15 Pascual A. Helv. Chim. Acta 1989; 72: 556
  • 16 Morita T. Fuse S. Nakamura H. Angew. Chem. Int. Ed. 2016; 55: 13580
  • 17 Clementi S. Forsythe PP. Johnson CD. Katritzky AR. Terem B. J. Chem. Soc., Perkin Trans. 2 1974; 399
  • 18 Reiter LA. J. Org. Chem. 1987; 52: 2714
  • 19 Jui NT. Lee EC. Y. MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 10015
  • 20 Kochetkov NK. Khomutova ED. Zh. Obshch. Khim. 1958; 28: 359
  • 21 Velcicky J. Soicke A. Steiner R. Schmalz H.-G. J. Am. Chem. Soc. 2011; 133: 6948
  • 22 Fokin SV. Tolstikov SE. Tretyakov EV. Romanenko GV. Bogomyakov AS. Veber SL. Sagdeev RZ. Ovcharenko VI. Russ. Chem. Bull. 2011; 60: 2470
    • 23a Kosugi M. Sasazawa K. Shimizu Y. Migita T. Chem. Lett. 1977; 301
    • 23b Kosugi M. Shimizu Y. Migita T. Chem. Lett. 1977; 1423
    • 23c Milstein D. Stille JK. J. Am. Chem. Soc. 1978; 100: 3636
    • 23d Milstein D. Stille JK. J. Am. Chem. Soc. 1979; 101: 4992
  • 24 Miyaura N. Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
  • 25 Miyaura N. Yamada K. Suzuki A. Tetrahedron Lett. 1979; 20: 3437
  • 26 Uchiyama D. Yabe M. Kameyama H. Sakamoto T. Kondo Y. Yamanaka H. Heterocycles 1996; 43: 1301
  • 27 Lee JS. Cho YS. Chang MH. Koh HY. Chung BY. Pae AN. Bioorg. Med. Chem. Lett. 2003; 13: 4117
  • 28 Young RJ. Borthwick AD. Brown D. Burns-Kurtis CL. Campbell M. Chan C. Charbaut M. Convery MA. Diallo H. Hortense E. Irving WR. Kelly HA. King NP. Kleanthous S. Mason AM. Pateman AJ. Patikis AN. Pinto IL. Pollard DR. Senger S. Shah GP. Toomey JR. Watson NS. Weston HE. Zhou P. Bioorg. Med. Chem. Lett. 2008; 18: 28
    • 29a Sherman D. Kawakami J. He H.-Y. Dhun F. Rios R. Liu H. Pan W. Xu Y.-J. Hong S.-P. Arbour M. Labelle M. Duncton MA. J. Tetrahedron Lett. 2007; 48: 8943
    • 29b Whitlock GA. Conlon K. McMurray G. Roberts LR. Stobie A. Thurlow RJ. Bioorg. Med. Chem. Lett. 2008; 18: 2930
    • 29c Cui JJ. Tran-Dube M. Shen H. Nambu M. Kung P.-P. Pairish M. Jia L. Meng J. Funk L. Botrous I. McTigue M. Grodsky N. Ryan K. Padrique E. Alton G. Timofeevski S. Yamazaki S. Li Q. Zou H. Christensen J. Mroczkowski B. Bender S. Kania RS. Edwards MP. J. Med. Chem. 2011; 54: 6342
    • 29d He Y. Kamenecka TM. Shin Y. Song X. Jiang R. Noel R. Duckett D. Chen W. Ling YY. Cameron MD. Lin L. Khan S. Koenig M. LoGrasso PV. Bioorg. Med. Chem. Lett. 2011; 21: 1719
    • 29e Taldone T. Zatorska D. Patel HJ. Sun W. Patel MR. Chiosis G. Heterocycles 2013; 87: 91
    • 29f Yang C. Balsells J. Chu HD. Cox JM. Crespo A. Ma X. Contino L. Brown P. Gao S. Zamlynny B. Wiltsie J. Clemas J. Lisnock J. Gibson J. Zhou G. Garcia-Calvo M. Bateman TJ. Tong V. Xu L. Crook M. Sinclair P. Shen HC. ACS Med. Chem. Lett. 2015; 6: 461
    • 29g Mallinger A. Crumpler S. Pichowicz M. Waalboer D. Stubbs M. Adeniji-Popoola O. Wood B. Smith E. Thai C. Henley AT. Georgi K. Court W. Hobbs S. Box G. Ortiz-Ruiz M.-J. Valenti M. De Haven Brandon A. Te Poele R. Leuthner B. Workman P. Aherne W. Poeschke O. Dale T. Wienke D. Esdar C. Rohdich F. Raynaud F. Clarke PA. Eccles SA. Stieber F. Schiemann K. Blagg J. J. Med. Chem. 2015; 58: 1717
    • 29h Gazzard L. Williams K. Chen H. Axford L. Blackwood E. Burton B. Chapman K. Crackett P. Drobnick J. Ellwood C. Epler J. Flagella M. Gancia E. Gill M. Goodacre S. Halladay J. Hewitt J. Hunt H. Kintz S. Lyssikatos J. Macleod C. Major S. Medard G. Narukulla R. Ramiscal J. Schmidt S. Seward E. Wiesmann C. Wu P. Yee S. Yen I. Malek S. J. Med. Chem. 2015; 58: 5053
    • 29i Hatcher JM. Bahcall M. Choi HG. Gao Y. Sim T. George R. Janne PA. Gray NS. J. Med. Chem. 2015; 58: 9296
  • 30 Gilligan PJ. Clarke T. He L. Lelas S. Li Y.-W. Heman K. Fitzgerald L. Miller K. Zhang G. Marshall A. Krause C. McElroy JF. Ward K. Zeller K. Wong H. Bai S. Saye J. Grossman S. Zaczek R. Arneric SP. Hartig P. Robertson D. Trainor G. J. Med. Chem. 2009; 52: 3084
  • 31 Subramanyam C. Duplantier AJ. Dombroski MA. Chang S.-P. Gabel CA. Whitney-Pickett C. Perregaux DG. Labasi JM. Yoon K. Shepard RM. Fisher M. Bioorg. Med. Chem. Lett. 2011; 21: 5475
  • 32 Bobko MA. Evans KA. Kaura AC. Shuster LE. Su D.-S. Tetrahedron Lett. 2012; 53: 200
  • 33 Joseph JT. Sajith AM. Ningegowda RC. Nagaraj A. Rangappa KS. Shashikanth S. Tetrahedron Lett. 2015; 56: 5106
  • 34 Skraup ZH. Ber. Dtsch. Chem. Ges. 1880; 13: 2086
  • 35 Theoclitou M.-E. Robinson LA. Tetrahedron Lett. 2002; 43: 3907
  • 36 Curtius T. Ber. Dtsch. Chem. Ges. 1890; 23: 3023
  • 37 Yamamoto T. Fujita K. Asari S. Chiba A. Kataba Y. Ohsumi K. Ohmuta N. Iida Y. Ijichi C. Iwayama S. Fukuchi N. Shoji M. Bioorg. Med. Chem. Lett. 2007; 17: 3736
  • 38 Hanan EJ. van Abbema A. Barrett K. Blair WS. Blaney J. Chang C. Eigenbrot C. Flynn S. Gibbons P. Hurley CA. Kenny JR. Kulagowski J. Lee L. Magnuson SR. Morris C. Murray J. Pastor RM. Rawson T. Siu M. Ultsch M. Zhou A. Sampath D. Lyssikatos JP. J. Med. Chem. 2012; 55: 10090
  • 39 Boogaerts II. F. Nolan SP. J. Am. Chem. Soc. 2010; 132: 8858
  • 40 Shigenobu M. Takenaka K. Sasai H. Angew. Chem. Int. Ed. 2015; 54: 9572
  • 41 Hata K. Ito H. Segawa Y. Itami K. Beilstein J. Org. Chem. 2015; 11: 2737